
The role of seasonality

in vector-borne disease dynamics
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Dengue Fever Epidemiology

Dengue is a mosquito-borne infection caused by an arbivirus with 4 serotypes DENV1-
4.

The distribution is in tropical and subtropical areas. However, the disease is spre-
anding to northern sites, being in the ”gates of Europe”.

Recently the disease arrived to Madeira island and there is an outbreak with more
than 2000 cases.

Worldwide dengue distribution in 2010 and areas at risk - Source: WHO (2012)



Dengue in Madeira

The outbreak started in early Automn season and has been developing.

The virus seem to be the DENV-1, and people think that the disease was imported
from the Americas (Brazil or Venezuela).



Dengue in Madeira

Comulatively it has been reported 2164 cases.

 0

 500

 1000

 1500

 2000

 2500

 38  40  42  44  46  48  50  52  54  56  58

C
om

ul
at

iv
e 

C
as

es

Week



Dengue in Madeira

The outbreak is mainly in Funchal, but the disease is spreading through the island
and surounding islands.

Moreover, 78 cases of infected people were exported from the archipelago. Mainly in
people from Portugal, but also from other countries such as UK, Germany, Sweden,
France and Finland.



The vector

The main vector is the Aedes aegypti, original from Africa, is now more distributed
in Americas.

This species has been identified in Madeira island since 2005.

Other vector species is the Aedes albopictus, which is more distributed in Asia,
Northern Africa and Europe.

This species has been identified to Spain, France, Italy, Croatia, Greece, between
others.

Usually is verified an increase in number of mosquitos during the warmer seasons,
spetially in temperate regions.



Time-scale separation in SISUV

The simplified version of the SISUV model, considering constant population size for
human and mosquitos, is

d

dt
I =

β

M
(N − I)V − αI

d

dt
V =

ϑ

N
(M − V )I − νV



Time-scale separation in SISUV

The simplified version of the SISUV model, considering constant population size for
human and mosquitos, is

d

dt
I =

β

M
(N − I)V − αI

d

dt
V =

ϑ

N
(M − V )I − νV

However it is noticed that the mosquitos’ dynamics is faster than the humans’, so

we modified the variables os mosquitos dynamics
(
ϑ =: ϑ̄

ε
and ν =: ν̄

ε

)
in order to

put them in the same range of the human’s.

d

dt
I =

β

M
(N − I)V − αI

d

dt
V =

1

ε

(
ϑ̄

N
(M − V )I − ν̄V

)



Time-scale separation in SISUV
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Using the following parameters set:

α = 1
10 y, β = 2 · α, ν = 1

10 d
= 365

10
y−1 and ϑ = 2 · ν .



Time-scale separation in SISUV

Considering the normal time scale given by t and the fast time scale given by τ := t
ε
,

the general solution for the ODE system is:

I = I0 + εI1 + ε2I2 + O(ε3)

V = V0 + εV1 + ε2V2 + O(ε3)

And for the slow time scale we obtain from the right hand side of the ODE system

dI

dt
= ε0

(
β

M
(NV0 − I0V0) − αI0

)
+ ε1

(
β

M
(NV1 − I1V0 − I0V1) − αI1

)
+ O(ε2)

dV

dt
=

1

ε

(
ϑ̄

N
(MI0 − V0I0) − ν̄V0

)
+ ε0

(
ϑ̄

N
(MI1 + V1I0 + V0I1) − ν̄V1

)
+ O(ε1)



Time-scale separation in SISUV

Being dI
dτ

= εdI
dt

and dV
dτ

= εdV
dt

, if we substitute on the right hand of the ODEs we
obtain

dI

dτ
= ε

(
β

M
(N − I0) V0 − αI0

)

︸ ︷︷ ︸
=

dI0
dτ

+O(ε2)

dV

dτ
= ε0

(
ϑ̄

N
(M − V0) I0 − ν̄V0

)

︸ ︷︷ ︸
=

dV0

dτ

+O(ε1)

Or, for exactly ε = 0, the derivatives are:

dI0

dτ
= 0

dV0

dτ
=

(
ϑ̄

N
(M − V0) I0 − ν̄V0

)



Time-scale separation in SISUV

As the infected has not fast time-scale, so dI0

dτ
= 0 and all values of I0(τ ) = I0(τ0).

So, substituting I0(τ ) in dV0

dτ
it is obtained:

dV0

dτ
= −

(
ϑ̄

N
I0(τ0) + ν̄

)
V0 +

ϑ̄

N
MI0(τ0)

Which approaches very rapidly in an exponential way to its local stationary state:

V ∗
0 =

ϑ̄
N

I0(τ0)
ϑ̄
N

I0(τ0) + ν̄
· M



Time-scale separation in SISUV

Now to the slow dynamics:

dI0

dt
=

(
β

M
(NV0 − I0V0) − αI0

)

ε
dV0

dt
=

(
ϑ̄

N
(MI0 − V0I0) − νV0

)

If we set ε = 0, we can obtain the equation of V0(t), for any time t:

V0(t) =
ϑ̄
N

I0(t)
ϑ̄
N

I0(t) + ν̄
· M

And now, finally, we can find the global stationary state:

I∗ =
β − α · ν

ϑ

β + α
N and V ∗ =

β − α · ν
ϑ

β
(
1 + ν

ϑ

) M



Time-scale separation in SISUV

The Jacobian matrix of the model is given by:

A =

(
−

β
M

· V ∗ − α β
M

· (N − I∗)
ϑ̄

εN
· (M − V ∗) 1

ε

(
− ϑ̄

N
· I∗ − ν̄

)
)

=

(
a b

c d

)

The eigenvalues of are given by:

λ1/2 =
(a + d)

2
±

√(
a + d

2

)2

− (ad − bc)

And the numerical simualtions shows that one is close to 0 and the other is large
negative ( λ1 = 0 and λ2 = −73).

And the general formula of eigenvectors is:

ui =
1√

1 +
(

c
d−λi

)2

(
1

− c
d−λi

)



Time-scale separation in SISUV
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Center manifold analysis in SISUV

Start by shifting the system (I, V ) into a (z, w) system with the endemic fixed point

at the origin:

z := I − I∗

w := V − V ∗

Rearranging the system and considering the non-trivial stationary state as the origin

of a (x, y) system and the eigendirections as coordinate axis. This transformation is

done considering:

x := T −1z

Substituting:

x =

(
x

y

)
=

(
k 0
c
d

1

) (
z

w

)
=

(
kz

c
d
z + w

)

Similarly, it is possible to calculate z:

z =

(
z

w

)
=

(
1
k

0

−c
d

1
k

1

) (
x

y

)
=

(
1
k
x

−c
d

1
k
x + y

)



Center manifold analysis in SISUV

The ODE system from the original (I, V ) to the z system is given by d
dt

z = Az + q

with the nonlinear part given by q := zw ·

(
−

β
M

− ϑ
N

)
. Now we can obtain the time

derivative of the vector x via:

d

dt
x = Λx + T −1q(x)

Obtaining explicitly:

ẋ = −
β

M
xy +

c

d

1

k
x2

ẏ = d · y +

(
c

d

β

M
+

ϑ

N

) (
c

d

1

k
x2 −

1

k
xy

)

To find the transformation y = h(x) along the center manifold, the functional
N (h (x)) has to vanish:

N (h (x)) =
dh

dx
· f (x, h (x)) − (d · h (x) + g (x, h (x))) = 0



Center manifold analysis in SISUV

This equation can be solved via polynomial approximation of h(x) :

h(x) := a2 · x2 + a3 · x3 + a4 · x4 + a5 · x5 + O(x6)

The center manifold was calculated by a 3rd order polynomial:

a2 = −
c · s

d2 · k2

a3 =
1

d

(
2c

d · k

β

M
+

s

k

)
a2

From the 3rd order polynomial, it is possible to use a general formula to easily get a
polynomial of a higer order:

aj =
1

d

(
(j − 1)

β

M

c

k · d
+

s

k

)
aj−1 −

β

M · d

(
j−2∑

ℓ=2

ℓ · aj · aj−ℓ

)

For j = 4,5, ...,∞.



Center manifold analysis in SISUV
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Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.
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We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

Ṡ = αI −
β

N
SI

İ =
β

N
SI − αI



Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

Ṡ = αI −
β

N
SI

İ =
β

N
SI − αI

Considering stable population size N = S + I we can simplify

İ =
β

N
(N − I)I − αI



Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

Ṡ = αI −
β

N
SI

İ =
β

N
SI − αI

Considering stable population size N = S + I we can simplify

İ =
β

N
(N − I)I − αI

The seasonal forcing in given by β(t) = β0(1 + η · cos(ωt))

İ =
β(t)

N
(N − I)I − αI



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

β(t) = β0 + εβ1e
iωt



Analytic seasonal forced SIS

If we plot the SIS seasonal forced
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The I(t) is defined by the stationary state plus some oscillations dependent on the

amplitude I1, i.e.

I(t) = I0 + εI1e
iωt + O(ε2)



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

β(t) = β0 + εβ1e
iωt

The general solution for I(t) is given by

I(t) = I0 + εI1e
iωt + O(ε2)



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

β(t) = β0 + εβ1e
iωt

The general solution for I(t) is given by

I(t) = I0 + εI1e
iωt + O(ε2)

And applying the time derivative to I(t)

dI

dt
= εI1iωeiωt



Analytic seasonal forced SIS

Substituting in the ODE

d

dt
I =

β(t)

N
(N − I) I − αI

εiωI1e
iωt =

1

N

(
β0 + εβ1e

iωt
) (

N −
(
I0 + εI1e

iωt
)) (

I0 + εI1e
iωt

)
− α

(
I0 + εI1e

iωt
)



Analytic seasonal forced SIS

Substituting in the ODE

d

dt
I =

β(t)

N
(N − I) I − αI

εiωI1e
iωt =

1

N

(
β0 + εβ1e

iωt
) (

N −
(
I0 + εI1e

iωt
)) (

I0 + εI1e
iωt

)
− α

(
I0 + εI1e

iωt
)

And separating the terms in respect to order of ε, we get

εiωI1e
iωt = εeiωt

(
−αI1 +

1

N

(
−β0I0I1 + I0β1N − I2

0β1 + I1β0N − β0I0I1

))

+ε0

(
β0

N
(N − I0) I0 − αI0

)



Analytic seasonal forced SIS

Substituting in the ODE

d

dt
I =

β(t)

N
(N − I) I − αI

εiωI1e
iωt =

1

N

(
β0 + εβ1e

iωt
) (

N −
(
I0 + εI1e

iωt
)) (

I0 + εI1e
iωt

)
− α

(
I0 + εI1e

iωt
)

And separating the terms in respect to order of ε, we get

εiωI1e
iωt = εeiωt

(
−αI1 +

1

N

(
−β0I0I1 + I0β1N − I2

0β1 + I1β0N − β0I0I1

))

+ε0

(
β0

N
(N − I0) I0 − αI0

)

The values of order ε0 have conditions for stationarity, hence I0 = I∗

εiωI1e
iωt = εeiωt

(
−αI1 +

1

N

(
−β0I0I1 + I0β1N − I2

0β1 + I1β0N − β0I0I1

))



Analytic seasonal forced SIS

We get the complex amplitude for I1

I1 =
β1
N

(N − I0) I0

iω + β0
N

I0 + α −
β0
N

(N − I0)



Analytic seasonal forced SIS

We get the complex amplitude for I1

I1 =
β1
N

(N − I0) I0

iω + β0
N

I0 + α −
β0
N

(N − I0)

Setting a := β0

N
I0 + α −

β0

N
(N − I0) and c := β1

N
(N − I0) I0 , we can simplify

I1 =
c

a + iω



Analytic seasonal forced SIS

We get the complex amplitude for I1

I1 =
β1
N

(N − I0) I0

iω + β0
N

I0 + α −
β0
N

(N − I0)

Setting a := β0

N
I0 + α −

β0

N
(N − I0) and c := β1

N
(N − I0) I0 , we can simplify

I1 =
c

a + iω

And multiplying numerator and denominator by its complex conjugate a − iω

I1 =
ca

(a2 + ω2)
+ i

(
−ca

(a2 + ω2)

)



Analytic seasonal forced SIS

We get the complex amplitude for I1

I1 =
β1
N

(N − I0) I0

iω + β0
N

I0 + α −
β0
N

(N − I0)

Setting a := β0

N
I0 + α −

β0

N
(N − I0) and c := β1

N
(N − I0) I0 , we can simplify

I1 =
c

a + iω

And multiplying numerator and denominator by its complex conjugate a − iω

I1 =
ca

(a2 + ω2)
+ i

(
−ca

(a2 + ω2)

)
:= Ĩ1 + iÎ1

where the real part Ĩ1 := ca
(a2+ω2)

and the imaginary part Î1 := −cω
(a2+ω2)

are deter-

mined.



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I∗ + εI1e
iωt



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by
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or, explicitly with real and imaginary parts for I1

I(t) = I∗ + ε
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Ĩ1 + iÎ1

)
eiωt



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I∗ + εI1e
iωt

or, explicitly with real and imaginary parts for I1

I(t) = I∗ + ε
(
Ĩ1 + iÎ1

)
eiωt

And applying the same calculations for e−iωt , the second part of the real cos

function for I1 using its complex conjugate Ī1 = Ĩ1 − iÎ1

I(t) = I∗ + ε
(
Ĩ1 − iÎ1

)
e−iωt



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I∗ + εI1e
iωt

or, explicitly with real and imaginary parts for I1

I(t) = I∗ + ε
(
Ĩ1 + iÎ1

)
eiωt

And applying the same calculations for e−iωt , the second part of the real cos

function for I1 using its complex conjugate Ī1 = Ĩ1 − iÎ1

I(t) = I∗ + ε
(
Ĩ1 − iÎ1

)
e−iωt

Combining the results for eiωt and e−iωt gives for the real forcing β(t) = β0 +

ε1
2
β1

(
eiωt + e−iωt

)
the real response of the infected

I(t) = I∗ + ε · AI · cos (ω (t + ϕI))



Analytic seasonal forced SIS

Combining the results for eiωt and e−iωt gives for the real forcing β(t) = β0 +
ε1

2
β1

(
eiωt + e−iωt

)
the real response of the infected

I(t) = I∗ + ε · AI · cos (ω (t + ϕI))

with real amplitude AI and phase ϕI calculated from the complex amplitude

AI = 2

√
Ĩ2
1 + Î2

1

ϕI =
1

ω
arctan

(
Î1

Ĩ1

)



Analytic seasonal forced SIS
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Analytic seasonal forced SIS
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Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the

SISUV

Ṡ = αI −
β

M
SV

İ =
β

M
SV − αI

U̇ = ψ − νU −
ϑ

N
UI

V̇ =
ϑ

N
UI − νV



Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the

SISUV

Ṡ = αI −
β

M
SV

İ =
β

M
SV − αI

U̇ = ψ − νU −
ϑ

N
UI

V̇ =
ϑ

N
UI − νV

Considering N = S(t) + I(t) and M = U(t) + V (t) we obtain:

d

dt
I =

β

M
(N − I)V − αI

d

dt
V =

ϑ

N
(M − V )I − νV



Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the

SISUV

Ṡ = αI −
β

M
SV

İ =
β

M
SV − αI

U̇ = ψ − νU −
ϑ

N
UI

V̇ =
ϑ

N
UI − νV

Considering N = S(t) + I(t) and M = U(t) + V (t) we obtain:

d

dt
I =

β

M
(N − I)V − αI

d

dt
V =

ϑ

N
(M(t) − V )I − νV

With the seasonal forcing given by M(t) = M0(1 + η · cos(ωt)).



Analytic seasonally forced SISUV

The real part of the seasonal forcing is

M(t) = M0 + εM1e
iωt



Analytic seasonally forced SISUV

The real part of the seasonal forcing is

M(t) = M0 + εM1e
iωt

Applying the ansatz we get the general solution for I(t) and V (t)

I(t) = I0 + εI1e
iωt + O

(
ε2

)

V (t) = V0 + εV1e
iωt + O

(
ε2

)



Analytic seasonally forced SISUV

The real part of the seasonal forcing is

M(t) = M0 + εM1e
iωt

Applying the ansatz we get the general solution for I(t) and V (t)

I(t) = I0 + εI1e
iωt + O

(
ε2

)

V (t) = V0 + εV1e
iωt + O

(
ε2

)

and the time derivatives

dI

dt
= εI1iωeiωt

dV

dt
= εV1iωeiωt



Analytic seasonally forced SISUV

Substituting in the ODE for I

d

dt
I =

β

M
(N − I)V − αI

εI1iωeiωtI =
β

M

(
N −

(
I0 + εI1e

iωt
)) (

V0 + εV1e
iωt

)
− α

(
I0 + ǫI1e

iωt
)



Analytic seasonally forced SISUV

Substituting in the ODE for I

d

dt
I =

β

M
(N − I)V − αI

εI1iωeiωtI =
β

M

(
N −

(
I0 + εI1e

iωt
)) (

V0 + εV1e
iωt

)
− α

(
I0 + ǫI1e

iωt
)

And reorganizing the terms of different orders of ε

εI1iωeiωtI =
β

M
(N − I0)V0 − αI0 + εeiωt

[
β

M
(NV1 − I0V1 − V0I1) − αI1

]



Analytic seasonally forced SISUV

Substituting in the ODE for I

d

dt
I =

β

M
(N − I)V − αI

εI1iωeiωtI =
β

M

(
N −

(
I0 + εI1e

iωt
)) (

V0 + εV1e
iωt

)
− α

(
I0 + ǫI1e

iωt
)

And reorganizing the terms of different orders of ε

εI1iωeiωtI =
β

M
(N − I0)V0 − αI0 + εeiωt

[
β

M
(NV1 − I0V1 − V0I1) − αI1

]

As I0 = I∗ and V0 = V ∗ we can say that β
M

(N − I0)V0 − αI0 = 0 , so:

εI1iωeiωt = εeiωt

[
β

M
(NV1 − I0V1 − V0I1) − αI1

]



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I1 dependent on V1

I1 =
β
M

(N − I0)
β
M

V0 + α + iω
V1



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I1 dependent on V1

I1 =
β
M

(N − I0)
β
M

V0 + α + iω
V1

Setting β
M

(N − I0) := c and β
M

V0 + α := d, we get

I1 :=
c

d + iω
V1



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I1 dependent on V1

I1 =
β
M

(N − I0)
β
M

V0 + α + iω
V1

Setting β
M

(N − I0) := c and β
M

V0 + α := d, we get

I1 :=
c

d + iω
V1

And multiplying numerator and denominator by the complex conjugate c
d−iω

, we
obtain

I1 =

(
cd

d2 + ω2
+ i

−cω

d2 + ω2

)
V1



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I1 dependent on V1

I1 =
β
M

(N − I0)
β
M

V0 + α + iω
V1

Setting β
M

(N − I0) := c and β
M

V0 + α := d, we get

I1 :=
c

d + iω
V1

And multiplying numerator and denominator by the complex conjugate c
d−iω

, we
obtain

I1 =

(
cd

d2 + ω2
+ i

−cω

d2 + ω2

)
V1 =: (a + ib)V1

with a := cd
d2+ω2 and b := −cω

d2+ω2 .
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Rearranging in orders of ε, we get

εV1iωeiωt =
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ϑ
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)
V1
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Once again, we can forget about the terms of the order ε0
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ϑ

N
M1I0 +

(
ϑ

N
(M0(a + ib) − I0 − V0(a + ib)) − ν

)
V1
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Obtaining specifically

V1 =
ϑ
N

M1I0

ϑ
N

(I0 + a(V0 − M0)) + ν + i
(

ϑ
N

b(V0 − M0) + ω
)

Setting u := ϑ
N

(I0 + a(V0 − M0)) + ν, v := ϑ
N

b(V0 − M0) + ω and w := ϑ
N

M1I0.

V1 =:
w

u + iv

Multiplying both terms by the complex conjugate, we get

V1 =
wu

u2 + v2
+ i

−wv

u2 + v2
=: Ṽ1 + iV̂1

being Ṽ1 := wu
u2+v2 and V̂1 := −wv

u2+v2 , obtaining the complex amplitude for V1 .
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Analytic seasonally forced SISUV

And substituting in the analytic expression for complex amplitude for I1, we obtain

I1 = (a + ib) · (Ṽ1 + iV̂1)

I1 = aṼ1 − bV̂1 + i(aV̂1 + bṼ1)

And setting Ĩ1 := aṼ1 − bV̂1 and Î1 := aV̂1 + bṼ1, we can simplify

I1 =: Ĩ1 + iÎ1
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parts of each one and doing a similar analysis for the second part of the real cos
function, as was done for SIS, we can obtain the real response for the system:
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Analytic seasonally forced SISUV

Obtaining the complex response for both I(t) and V (t) with the real and complex
parts of each one and doing a similar analysis for the second part of the real cos
function, as was done for SIS, we can obtain the real response for the system:

I(t) = I∗ + ε · AI · cos (ω (t + ϕI))

V (t) = V ∗ + ε · AV · cos (ω (t + ϕV ))

with the amplitude and phase for both variables given by

AI = 2

√
Ĩ2
1 + Î2

1 ϕI = 1
ω
arctan

(
Î1

Ĩ1

)

AV = 2

√
Ṽ 2

1 + V̂ 2
1 ϕV = 1

ω
arctan

(
V̂1

Ṽ1

)
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d−1 , ϑ = 2ν and η = 0.3 .

The amplitude in V (t) caused by the seasonality is not reflected in I(t) dynamics.

So, for modelling proposes, the vector dynamics is not important for the system.
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After have analysed the simplest models we made similar calculation for more com-
plicated SIR and SIRUV model, comparing the expressions from each other.

Considering a closed population for humans N(t) = S(t)+I(t)+R(t) we can simplify

the SIR model into a two dimentional system:

d

dt
I =

β(t)

N
· (N − I − R) · I − (µ + γ) · I

d

dt
R = γ · I − µ · R

And also for vectors M(t) = U(t) + V (t) for SIRUV model

d

dt
I =

β

M0

· (N − I − R) · V − (γ + µ) · I

d

dt
R = γ · I − µ · R

d

dt
V =

ϑ

N
· (M(t) − V ) · I − ν · V .
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The endemic stationary states of the SIR are given by

I∗ =
µ

(γ + µ)
·

(
1 −

γ + µ

β

)
· N

R∗(I∗) =
γ

µ
I∗

Whereas the stationary states for SIRUV system are given by

I∗ =
µ

(γ + µ) + γ+µ
β

· µ
·

(
1 −

γ + µ
ϑ
ν
β

)
· N

R∗(I∗) =
γ

µ
I∗

V ∗(I∗) =
ϑ
N

I∗

ν + ϑ
N

I∗
· M .

Essentially we can obtain the same stationary state in both models, by replacing the
β by ϑ

ν
β in SIR.
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The seasonal forcing was included via infection rate β(t) for SIR and via total number
of mosquitos M(t) for SIRUV.

For small seasonal forcing η, hence small ε we expect also small oscillations of the

state variables, hence

I(t) = I0 + εI1e
iωt + O

(
ε2

)

R(t) = R0 + εR1e
iωt + O

(
ε2

)

V (t) = V0 + εV1e
iωt + O

(
ε2

)

and for the time derivatives

dI

dt
= εI1iωeiωt

dR

dt
= εR1iωeiωt

dV

dt
= εV1iωeiωt .
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The R is the same for both models, so

d

dt
R = γI − µR

εR1iωeiωt = γ
(
I0 + εI1e

iωt
)

− µ
(
R0 + εR1e

iωt
)

= γI0 − µR0 + εeiωt (γI1 − µR1)

To zeroth order ε0 we obtain again the condition for stationarity

R1 =
γ

µ + iω
I1

Finally, multiplying numerator and denomicator both by its complex conjugate we

obtain

R1 =

(
γµ

µ2 + ω2
+ i

−γω

µ2 + ω2

)
· I1 =: (a + ib)I1

with a := γµ
µ2+ω2b := −γω

µ2+ω2 .
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Now we are going to analyse the I for both models.

d
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Now we are going to analyse the I for both models.
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(1+a)V0+(γ+µ)+i
(
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)V1

Putting both in a I1 := f
c+id

form, we have the specific values of each abreviation.

cIR = β0

N
(1 + a) I0 −

β0

N
(N − I0 − R0) + (γ + µ) cIRV = β

M0

(1 + a)V0 + (γ + µ)
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N
bI0 dIRV = ω + β
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bV0

fIR = β1
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(N − I0 − R0) I0 fIRV = β

M0
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Essencially, the only difference between the models is given by −
β0

N
(N − I0 − R0) in

the SIR.



The Full SIRUV and comparison with SIR model

Multiplying both terms of I1 by the complex conjugate c−id we obtain the amplitude
of I1 for models.

I1 := fIR
cIR+idIR

I1 := fIRV
cIRV +idIRV

V1

I1 =
((

fIRcIR

c2

IR+d2

IR

)
+ i

(
−fIRdIR

c2

IR+d2

IR

))
I1 =

((
fIRV cIRV

c2

IRV +d2

IRV

)
+ i

(
−fIRV dIRV

c2

IRV +d2

IRV

))
· V1
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Multiplying both terms of I1 by the complex conjugate c−id we obtain the amplitude
of I1 for models.

I1 := fIR
cIR+idIR

I1 := fIRV
cIRV +idIRV

V1

I1 =
((

fIRcIR

c2

IR+d2

IR

)
+ i

(
−fIRdIR

c2

IR+d2

IR

))
I1 =

((
fIRV cIRV

c2

IRV +d2

IRV

)
+ i

(
−fIRV dIRV

c2

IRV +d2

IRV

))
· V1

I1 := Ĩ1 + iÎ1 I1 := (x + iy)V1

Being Ĩ1 , x := fc
c2+d2 and Î1 , y := −fd

c2+d2 .
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Finally, from the ODE for the infected mosquitos

d

dt
V =

ϑ

N
(M(t) − V )I − νV

V1 =
ϑ
N

M1I0

ϑ
N

(I0 − (M0 − V0)x) + ν + iω − ϑ
N

(M0 − V0)y

V1 :=
k

g + ih

with the coefficients g := ϑ
N

(I0 − (M0 − V0)x) + ν, h := ω − ϑ
N

(M0 − V0)y and

k := ϑ
N

M1I0.

Multiplying both, numerator and denominator by the complex conjugate ( g − ih)

V1 =

(
kg

g2 + h2

)
+ i

(
−kh

g2 + h2

)
:= Ṽ1 + iV̂1

where the real part is Ṽ1 := kg
g2+h2 and the imaginary is V̂1 := −kh

g2+h2 .
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I1 = xṼ1 − yV̂1 + i
(
xV̂1 + yṼ1
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the complex amplitude of I1

R1 = (a + ib) · (Ĩ1 + iÎ1)

R1 = aĨ1 − bÎ1 + i
(
aÎ1 + bĨ1

)

R1 := R̃1 + iR̂1

where the real part is R̃1 := aĨ1 − bÎ1 and the imaginary part is R̂1 := aÎ1 + bĨ1.



The Full SIRUV and comparison with SIR model

So we have already obtained the first part of the real cos function for the three

variables

I(t) = I∗ + ε · (Ĩ1 + iÎ1)e
iωt

R(t) = R∗ + ε · (R̃1 + iR̂1)e
iωt

V (t) = V ∗ + ε · (Ṽ1 + iV̂1)e
iωt



The Full SIRUV and comparison with SIR model

So we have already obtained the first part of the real cos function for the three

variables

I(t) = I∗ + ε · (Ĩ1 + iÎ1)e
iωt

R(t) = R∗ + ε · (R̃1 + iR̂1)e
iωt

V (t) = V ∗ + ε · (Ṽ1 + iV̂1)e
iωt

And for the second part of the real cos function

I(t) = I∗ + ε · (Ĩ1 − iÎ1)e
−iωt

R(t) = R∗ + ε · (R̃1 − iR̂1)e
−iωt

V (t) = V ∗ + ε · (Ṽ1 − iV̂1)e
−iωt



The Full SIRUV and comparison with SIR model

Combining the results for eiωt and e−iωt we obtain the real response of each variable.

I(t) = I∗ + ε · AI · cos (ω (t + ϕI))

R(t) = R∗ + ε · AR · cos (ω (t + ϕR))

V (t) = V ∗ + ε · AV · cos (ω (t + ϕV ))

with the real amplitude A and real phase ϕ calculated from the complex amplitude,

via

AI = 2

√
Ĩ2
1 + Î2

1 ϕI = 1
ω
arctan

(
Î1

Ĩ1

)

AR = 2

√
R̃2

1 + R̂2
1 ϕR = 1

ω
arctan

(
R̂1

R̃1

)

AV = 2

√
Ṽ 2

1 + V̂ 2
1 ϕV = 1

ω
arctan

(
V̂1

Ṽ1

)



The Full SIRUV and comparison with SIR model

Comparing the amplitude and the phase numerically we have:

SIR SIRUV

εAI = 0.001955 εAI = 0.000774

ϕI = −0.248730 ϕI = −0.260094

Essencially, the only difference is in the amplitude for both models.



The Full SIRUV and comparison with SIR model

SIR SIRUV
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The Full SIRUV and comparison with SIR model

We can join both models in the same plot and replace β of SIR by ϑ
ν
β in order to

have the stationary states approximated.
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The Full SIRUV and comparison with SIR model

We can join both models in the same plot and replace β of SIR by ϑ
ν
β in order to

have the stationary states approximated.
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Comparing the two models we can say that are not such different, the diferences in
the amplitudes of I are in order of 0.001, so it is basically the same for both models.

So, once more, we can say that mosquitos do not add any information to models.



Thank you for your attention!


