The role of seasonality

in vector-borne disease dynamics
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Dengue Fever Epidemaiology

Dengue is a mosquito-borne infection caused by an arbivirus with 4 serotypes DENV1-
4.

The distribution is in tropical and subtropical areas. However, the disease is spre-
anding to northern sites, being in the ”gates of Europe”.

Recently the disease arrived to Madeira island and there is an outbreak with more
than 2000 cases.
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Dengue 1 Madeira

The outbreak started in early Automn season and has been developing.
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The virus seem to be the DENV-1, and people think that the disease was imported
from the Americas (Brazil or Venezuela).



Dengue 1 Madeira

Comulatively it has been reported 2164 cases.
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Dengue in Madeira

The outbreak is mainly in Funchal, but the disease is spreading through the island

and surounding islands.
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Moreover, 78 cases of infected people were exported from the archipelago. Mainly in
people from Portugal, but also from other countries such as UK, Germany, Sweden,

France and Finland.



The vector

The main vector is the Aedes aegypti, original from Africa, is now more distributed
in Americas.

This species has been identified in Madeira island since 2005.

Other vector species is the Aedes albopictus, which is more distributed in Asia,
Northern Africa and Europe.

This species has been identified to Spain, France, Italy, Croatia, Greece, between
others.

Usually is verified an increase in number of mosquitos during the warmer seasons,
spetially in temperate regions.




Time-scale separation in SISUV

The simplified version of the SISUV model, considering constant population size for
human and mosquitos, is

d
Sy ﬂ(N—I)V—OJ
dt M

9
—V = —(M-V)I —vV
dt N



Time-scale separation in SISUV

The simplified version of the SISUV model, considering constant population size for
human and mosquitos, is

d

By ﬁ(N—I)V—aI
dt M

d
dt

However it is noticed that the mosquitos’ dynamics is faster than the humans’, so

9
V=_—_(M-V)I-vV
N

we modified the variables os mosquitos dynamics (19 = g and v =: g) in order to

put them in the same range of the human’s.

d g

= (N -I)V —al
dt M

(0
—V = —(M - V)I — vV
N

d 1
dt g



Time-scale separation in SISUV

Using the following parameters set:

azﬁ,ﬁzQ-a,V:101d:31605y_1and19:2-1/.



Time-scale separation in SISUV

Considering the normal time scale given by t and the fast time scale given by 7 := ﬁ,
the general solution for the ODE system is:

I
v

IO —|— €I1 —|— 8212 —|— 0(63)
Vo + Vi + Vo + O(&?)

And for the slow time scale we obtain from the right hand side of the ODE system

dI

— = g0 (% (NVy — V) — aIO) + gt (% (NV, — IV — IyV3) — aIl) + O(e?)
dV ]_ ll§ _ 0 /19 — 1
T N(MIO—VOIO) — vV | + ¢ N(MI1—|—VlI0—|—VOI1) —oVi | +O(e)

dt



Time-scale separation in SISUV

Being % = e% and % = s%, if we substitute on the right hand of the ODEs we
obtain

dl
_dig
—dT
dVv )
= (N (M = Vo) o - DVO) ol

\ 7
N~

A

_a%
dr

Or, for exactly e = 0, the derivatives are:

dl,
dr
Yo = <£(M_VE))IO_DVE]>
dr N

=0



Time-scale separation in SISUV

As the infected has not fast time-scale, so % = 0 and all values of Iy(7) = Iy(70).
So, substituting Iy(7) in % it is obtained:

Vo v Io(mo) + o | Vo + v MIy(7o)

— = — | —=Io(T % — T

dr o7 e

Which approaches very rapidly in an exponential way to its local stationary state:

Ve ho(m)

—— - M
0 %10(7'0) —|—17




Time-scale separation in SISUV

Now to the slow dynamics:

dIO ,3
=9 Z NV, — I Vo) — al
dt (M( o — ToVo) ao)

dVy
E [
dt

v
= N(MIO — VOIO) — vV

If we set € = 0, we can obtain the equation of V{(t), for any time t:

Vo(t) =

%Io(t) M
Iy

(t) +v

9
N

And now, finally, we can find the global stationary state:

B-a-b
B+ a B(1+%)




Time-scale separation in SISUV

The Jacobian matrix of the model is given by:

The eigenvalues of are given by:

Al/zzﬂﬂi\/(a;df—(ad—bc)

And the numerical simualtions shows that one is close to 0 and the other is large
negative ( Ay = 0 and A\ = —73).

And the general formula of eigenvectors is:




Time-scale separation in SISUV




Center manifold analysis in SISUV

Start by shifting the system (I, V') into a (z, w) system with the endemic fixed point
at the origin:

z = I —TI"
Vv

g
I

Rearranging the system and considering the non-trivial stationary state as the origin
of a (x,y) system and the eigendirections as coordinate axis. This transformation is
done considering:

Substituting:

== (3)=(50)(5)= (%)

Similarly, it is possible to calculate z:

= (o)=(20)(5) = (i)



Center manifold analysis in SISUV

The ODE system from the original (I, V) to the z system is given by —z = Az +gq
_B B
). Now we can obtain the time

Y

with the nonlinear part given by q := zw (
N

derivative of the vector x via:

d
—xz=Az+ T
s x4+ T "q(x)

Obtaining explicitly:

. B el
T YT gE"

R (c 16 + 19) <cl 5 1 )
——x° — —x

YT \am T N) \ak” Tk

along the center manifold, the functional

To find the transformation y = h(x)

N (h (z)) has to vanish:

N (h (z)) =%'f(wah(w))—(d°h(w)+g(w,h(w))) =0



Center manifold analysis in SISUV

This equation can be solved via polynomial approximation of h(x) :
h(x) := az-zc2+a3-a33—|—a4-a:4—|—a5-a:5—|—(’)(zc6)
The center manifold was calculated by a 3" order polynomial:

C-*S
A2k

1(20 ,8+s)
as = — — 4+ —-]a
ST a\d- kM T k)P

From the 3¢ order polynomial, it is possible to use a general formula to easily get a
polynomial of a higer order:

((J_ Mk-d Z)a“_—<ze i ‘)

For j=4.,5,...,00



Center manifold analysis in SISUV
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Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.



Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

S = ol — =8ST

I = =8I —al



Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

S = aI—ESI
N

I.:ESI—aI
N

Considering stable population size N = S 4+ I we can simplify

I = ﬁ(N—I)I—aI
N



Analytic seasonal forced SIS

We started the analysis by the simplest SIS, because we can easily get the analytic
solution for the model seasonal forced.

S:aI—ESI
N

I = ESI-aI
N

Considering stable population size N = S 4+ I we can simplify

I= ﬁ(N—I)I—aI
N

The seasonal forcing in given by 3(t) = Bo(1 + 1 - cos(wt))

I = 5()(N NI — o



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

B(t) = Bo + eB1e™"



Analytic seasonal forced SIS

If we plot the SIS seasonal forced

The I(t) is defined by the stationary state plus some oscillations dependent on the

amplitude I, 1.e.

I(t) = I() —+ €Ileiwt -+ 0(62)



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

B(t) = Bo + eB1e™"

The general solution for I(t) is given by

I(t) = IO —+ €I16iwt -+ 0(82)



Analytic seasonal forced SIS

In the seasonal forcing we will consider the complex formulation, for now

B(t) = Bo + eB1e™"

The general solution for I(t) is given by

I(t) = IO —+ €I16iwt -+ 0(82)

And applying the time derivative to I(t)

dl R
— = eljiwe

dt

t



Analytic seasonal forced SIS

Substituting in the ODE

4y @(N—I)I—aI
dt N
E’l:CdIleiwt - N (,80 + 6,81€th> (N — (I() + EIleiwt>) (I() + €I16iwt) — X (I() + €I1€iwt)



Analytic seasonal forced SIS

Substituting in the ODE

4y @(N—I)I—af
dt N

. 1 : : : :
EiwIle“"t - N (,80 + 8,8161wt> (N — (I() + EIlezwt)) (I() + EIIlezwt) — X (I() + €I1€zwt)

And separating the terms in respect to order of €, we get

) : : 1
ciwl et = geit <—aIl + N (—501011 + IpB1 N — 1351 + I BN — ,B()IOI:[))

+&? (% (N — Iy) I, — aIO)



Analytic seasonal forced SIS

Substituting in the ODE

ar - @(N—I)I—OJ
N

N </6() + 5,61€iwt) (N — <I0 + eIlei“’t» (I() + eIlei“’t) — (I() —+ eIlei“’t)

And separating the terms in respect to order of €, we get

: : 1
ciwl et = geit (—aIl -+ N (—501011 + Iy31 N — 1361 + I1BoN — ,80[0[1))
_|_

The values of order €° have conditions for stationarity, hence I, = I*

R . 1
ciwl et = ege** (—0411 + N (—Bololy + IpB1N — I3y + I BN — ﬂofofl))



Analytic seasonal forced SIS

We get the complex amplitude for I,

B (N — Io) I

I, =
"o+ B0+ a— B (N — 1)




Analytic seasonal forced SIS

We get the complex amplitude for I,

B (N — Io) I

I, =
"o+ B0+ a— B (N — 1)

Setting a := %IO + a — % (N —I;) and c:= % (N — I) I , we can simplify



Analytic seasonal forced SIS

We get the complex amplitude for I,

B (N — Io) I

I, =
"o+ B0+ a— B (N — 1)

Setting a := Bofo+a— B8 (N —1I,) and c:= 8 (N — I,) I, , we can simplify
N N N

C
IL = ——
a + ww

And multiplying numerator and denominator by its complex conjugate a — 1w

7 — ca —I-'( —ca )
T @t (@ F )



Analytic seasonal forced SIS

We get the complex amplitude for I,

SL(N — Io) I
iw+ LI, + o — X (N — I)

I1:

Setting a := %IO + a — % (N —I;) and c:= % (N — Iy) I , we can simplify

C
L =——
a -+ ww

And multiplying numerator and denominator by its complex conjugate a — 1w

7 ca 4 ( —ca ) i .7
— 1 = 1
1 (a2 + w?) (a2 + w?) 1 1

where the real part I, := ﬁ and the imaginary part I, := ﬁ are deter-

mined.



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I* + eI, e**



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I* + eI, e**

or, explicitly with real and imaginary parts for I

It) =I"+-¢ (fl +zf1) et



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I* + eI, e**

or, explicitly with real and imaginary parts for I

It) =I"+-¢ (fl +zf1) et

And applying the same calculations for e *! , the second part of the real cos

function for I; using its complex conjugate I; = I~1 — ifl

I#) =T+ ¢ (fl _ ifl) e it



Analytic seasonal forced SIS

Hence the complex response of I(t) is given by

I(t) = I* + el,e™"

or, explicitly with real and imaginary parts for I

It) =I"+-¢ (fl + zfl) et

And applying the same calculations for e *! , the second part of the real cos

function for I; using its complex conjugate I; = I~1 — ifl

I(t) =I"+ ¢ (”f1 - z'fl) e it

1wt and e—zwt

Combining the results for e gives for the real forcing B(t) = By +

e301 (€™t + e7™*) the real response of the infected

I(t) =I"+¢-Aj-cos (w(t+ 1))



Analytic seasonal forced SIS

Combining the results for e*“! and e~ gives for the real forcing B(t) = B¢ +
e%,@l (e""t + e"“"t) the real response of the infected

I(t)y=I"+¢-Aj-cos (w(t+ 1))

with real amplitude A; and phase 7 calculated from the complex amplitude

A = 24/I? + I?

1 I
pr = —arctan | =
w I,



Analytic seasonal forced SIS

Parameters: o = %y‘l , Bo=2a and 1 = 0.1



Analytic seasonal forced SIS

Parameters: o = %y‘l , Bo=2a and 1 = 0.1



Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the
S1N1UAY



Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the
S1N1UAY

S = aI—ﬁsv
M
I = ﬁSV—aI
M

. ()
U=v—-—vU - —-UlI
N
. )
V = -UI —vV
N
Considering N = S(t) + I(t) and M = U (t) + V(t) we obtain:

4y - ﬁ(N—I)V—aI
M

9
—V = —(M—-V)I—-vV
N



Analytic seasonally forced SISUV

The next step was to introduce the vector dynamic into the SIS system, getting the
S1N1UAY

S = al—ﬂsv
M
I = ﬂsv—aI
M

. 9
U=1—vU——UI
N

. (0
V = —-UI — vV
N
Considering N = S(t) + I(t) and M = U (t) + V(t) we obtain:

d
Sy g E(N—I)V — ol
dt M

d 9
SV = (M) = V) —vV
dt N

With the seasonal forcing given by M (t) = My(1 + n - cos(wt)).



Analytic seasonally forced SISUV

The real part of the seasonal forcing is

M(t) = MO —+ €M1€iwt



Analytic seasonally forced SISUV

The real part of the seasonal forcing is

M(t) = MO —+ €M1€iwt

Applying the ansatz we get the general solution for I(t) and V(t)

I(t) = Iy + el + O (&%)

V(t) = Vo +eVie™ + O (€7



Analytic seasonally forced SISUV

The real part of the seasonal forcing is
M(t) = My + eM,e™"
Applying the ansatz we get the general solution for I(t) and V(t)
I(t) = Iy + el + O (&%)

V(t)

% _I_ 8‘/16th _I_ O (82)

and the time derivatives

dl D it
— = eljiwe"
dt

av . 1wt
— = eVjwwe

dt



Analytic seasonally forced SISUV

Substituting in the ODE for I

A P N—DV—al
dt M
eljiwe™'l = 5 (N — (Io + e,ie™?)) (Vo + eVie™?) — o (Iy + el ")

M



Analytic seasonally forced SISUV

Substituting in the ODE for I

A BNV —al
dt M
eljiwe™'l = % (N — (Io + e,ie™?)) (Vo + eVie™?) — o (Iy + el ")

And reorganizing the terms of different orders of ¢

B

6I1iwei‘“’tI = M(N — I())% — CYI() —+ eei“’t % (N‘/l — I()‘/l — %Il) — OéIl



Analytic seasonally forced SISUV

Substituting in the ODE for I

A BNV —al
dt M
eljiwe™'l = % (N — (Io + e,ie™?)) (Vo + eVie™?) — o (Iy + el ")

And reorganizing the terms of different orders of ¢

B

6I1iwei‘“’tI = M(N — I())% — CYI() —+ eei“’t [% (N‘/l — I()‘/l — %Il) — OéI1]

As Ip=1I" and V, = V* we can say that %(N — Ip)Vo — aly =0, so:

ehiwe™' = ge*! l% (NVy — IV, — WI,) — a11]



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I, dependent on V;

B (N —1I
I, = BM( 0? Vi
MV(')—l—a—Fuu




Analytic seasonally forced SISUV

And finally we get the complex amplitude of I, dependent on V;

B (N —1I
I, = BM( 0? Vi
MV(')—l—a—Fuu

Setting % (N — Iy) := c and %‘/0 + o :=d, we get

- C
d 4w

I1: ‘/1



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I, dependent on V;

B (N —1I
I, = BM( O? Vi
MV(')—l—a—Fuu

Setting % (N — Iy) := c and %‘/0 + o :=d, we get

- C
d 4w

I1: ‘/1

c
d—iw’

And multiplying numerator and denominator by the complex conjugate we

obtain

I ( cd Iy —Ccw ) v
= 7
1 d? + w? d? + w2 L



Analytic seasonally forced SISUV

And finally we get the complex amplitude of I, dependent on V;

%(N—Io)

I1: -
%V()—I—a—kzw

1

Setting % (N — Iy) := c and %Vb + o :=d, we get

C

I i = ——
d -+ 1w

Vi

And multiplying numerator and denominator by the complex conjugate -=-, we

obtain

cd . —cw . ,
Lh=\grotigre) =@t

i — _cd e _—Cw_
with a := 1o and b := el



Analytic seasonally forced SISUV

Now we apply the same calculations to find the analytic solution of the amplitude
for V1. However, in this case we use the seasonal forcing in M (t)

d 9
—V = —(M(t) — V)I —vV
dt N

eViiwe™! = ~ (Mo + eMye™”) — (Vo + eVie™?)) (Vo + € (a + ib) Vie™*) —
—v (‘/(') + 8‘/16iwt)



Analytic seasonally forced SISUV

Now we apply the same calculations to find the analytic solution of the amplitude
for V1. However, in this case we use the seasonal forcing in M (t)

d 9
—V = —(M(t) — V)I —vV
dt N

eViiwe™! = ~ (Mo + eMye™”) — (Vo + eVie™?)) (Vo + € (a + ib) Vie™*) —
—v (‘/(') + 8‘/16iwt)

Rearranging in orders of £, we get

. ()
eViiwe™w! = N (Mo — Vy) Iy — vVy +

[0 9
teett [NMlIO + (N (My(a + ib) — Iy — Vi(a + ib)) — V) Vl]



Analytic seasonally forced SISUV

Now we apply the same calculations to find the analytic solution of the amplitude
for V1. However, in this case we use the seasonal forcing in M (t)

d

9
2V = (M) = V) —vV

eViiwe™! = % ((Mo + eMye™?) — (Vp + eVie™)) (Vo + € (a + ib) Vie™!) —
—v (Vo + eVie™)

Rearranging in orders of £, we get

. )
eViiwe™w! = N (Mo — Vy) Iy — vVy +

[0 0
+ee™t [NMlIO + (N (My(a + ib) — Iy — Vy(a + b)) — 1/) V1]

Once again, we can forget about the terms of the order &°

. v v . .
|\ NMIIO + (N (My(a + tb) — Iy — Vio(a + ib)) — 1/) Vi



Analytic seasonally forced SISUV

Obtaining specifically

_ ~Milo

Vi=- —
~ Iy + a(Vo — My)) + v + i (xb(Vo — My) + w)



Analytic seasonally forced SISUV

Obtaining specifically

_ M,
¥ o+ a(Vo — My)) + v+ (b(Vo — Mo) + w)

Vi

Setting u := % (Ip + a(Vy — My)) + v, v := %b(% — My) + w and w := %MlIO.

Vi =: ,
u + v



Analytic seasonally forced SISUV

Obtaining specifically

2 M1,
2 (Io + a(Vo — My)) + v + i (2b(Vo — Mo) + w)

Y

Setting u := % (Io + a(Vo — My)) + v, v := %b(VO — My) + w and w := %MlIO.

w
Vi =:

u -+ v

Multiplying both terms by the complex conjugate, we get

1 = ( = V1 (A1
u2 + 2 u? + 2
being V; 1= uzw—:‘# and V; := u;—jf;‘)’z, obtaining the complex amplitude for V; .



Analytic seasonally forced SISUV

And substituting in the analytic expression for complex amplitude for I,, we obtain

I = (a+1ib) - (Vi +iVi)



Analytic seasonally forced SISUV

And substituting in the analytic expression for complex amplitude for I,, we obtain

I = (a+ib) - (Vi +iVy)
I, = aV;, — bV; + i(aV; + bW;)



Analytic seasonally forced SISUV

And substituting in the analytic expression for complex amplitude for I,, we obtain

I = (a+ib) - (Vi +iVy)
I, = aV;, — bV; + i(aV; + bW;)

And setting I~1 = a‘71 — b‘71 and fl = a‘/}l + b‘71, we can simplify

I = I + il



Analytic seasonally forced SISUV

Obtaining the complex response for both I(t) and V (t) with the real and complex
parts of each one and doing a similar analysis for the second part of the real cos
function, as was done for SIS, we can obtain the real response for the system:



Analytic seasonally forced SISUV

Obtaining the complex response for both I(t) and V (t) with the real and complex
parts of each one and doing a similar analysis for the second part of the real cos
function, as was done for SIS, we can obtain the real response for the system:

I(t) = I"4+e-Ar-cos(w(t+ 1))

V(it) =V +e:-Ay-cos(w(t+ pv))



Analytic seasonally forced SISUV

Obtaining the complex response for both I(t) and V (t) with the real and complex

parts of each one and doing a similar analysis for the second part of the real cos
function, as was done for SIS, we can obtain the real response for the system:

I(t) = I"4+e-Ar-cos(w(t+ 1))

V(it) =V +e:-Ay-cos(w(t+ pv))

with the amplitude and phase for both variables given by

Ap=24/I2 + I? @1 = ~arctan (%)

Ay = 2\/‘712 + V2 Yy = —arctan (&)




Analytic seasonally forced SISUV




Analytic seasonally forced SISUV

Parameters: a=:y™', 3=2a, v=322d™', 9=2v and n=0.3.
The amplitude in V (t) caused by the seasonality is not reflected in I(¢) dynamics.

So, for modelling proposes, the vector dynamics is not important for the system.



The Full SIRUV and comparison with SIR model

After have analysed the simplest models we made similar calculation for more com-
plicated SIR and SIRUV model, comparing the expressions from each other.



The Full SIRUV and comparison with SIR model

After have analysed the simplest models we made similar calculation for more com-
plicated SIR and SIRUV model, comparing the expressions from each other.

Considering a closed population for humans N (t) = S(t)+1(t) + R(t) we can simplify
the SIR model into a two dimentional system:

%I = %t)-(N—I—R)-I—(/hLv)-I
d

—R=~-IT—p-R
” ¥ 0



The Full SIRUV and comparison with SIR model

After have analysed the simplest models we made similar calculation for more com-
plicated SIR and SIRUV model, comparing the expressions from each other.

Considering a closed population for humans N (t) = S(t)+1(t) + R(t) we can simplify
the SIR model into a two dimentional system:

d B(t)

1 =", (N—IT—-—R)-IT— T
7 N ( ) (n+ )
dR— I R

B =7 !

And also for vectors M (t) = U(t) + V(t) for SIRUV model

d B

1= (N—-T—R) -V — T
7 M ( ) (v + w)
dp I R

a a

d 9

V= —. (M) =-V)-T—v-V

dt N (M@ —V) v



The Full SIRUV and comparison with SIR model

The endemic stationary states of the SIR are given by

o 7 .<1_7+u>.N
(v + n) B

v}



The Full SIRUV and comparison with SIR model

The endemic stationary states of the SIR are given by

o L.<1_7+u>.N
(v+ ) 6
1)

Whereas the stationary states for SIRUV system are given by

. _ Iz Y+
I" = L\t T N
(v+u)+55 .0
7]
4

— . M

V) =



The Full SIRUV and comparison with SIR model

The endemic stationary states of the SIR are given by

o L.<1_7+u>.N
(v + 1) B
1)

Whereas the stationary states for SIRUV system are given by

M Y+
I 11— - N
(v+p)+ T p < %ﬁ)
v
&I

N

.M

Essentially we can obtain the same stationary state in both models, by replacing the
B by 28 in SIR.
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The Full SIRUV and comparison with SIR model

The seasonal forcing was included via infection rate 3(t) for SIR and via total number
of mosquitos M (t) for SIRUV.

For small seasonal forcing 7, hence small € we expect also small oscillations of the
state variables, hence

I(t) = I() + €I1€iwt -+ @ (Ez)
R(t) = Ro+ eRie™" + O (&?)

V(t) = Vo +eVie™ + O (&?)

and for the time derivatives

dl ot
— = eljiwe™
dt

dR . wwt
— = eRjwwe
dt

A% it
— = eVjiwe®™

dt
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The Full SIRUV and comparison with SIR model

The R is the same for both models, so

d
—R = ~vI — uR
” I — p

eRjiwe™t = Y (Io + EIleiwt) — K (Ro + €R1€iwt)

= ~vIp — pRo + €™ (vI; — pRy)

To zeroth order €° we obtain again the condition for stationarity

B
R, = I
1 u—l—iwl

Finally, multiplying numerator and denomicator both by its complex conjugate we

obtain

Vi . W
R1 _= (—uz —|_ w2 —I— z—MQ —|— wz) . I1



The Full SIRUV and comparison with SIR model

The R is the same for both models, so

d
SR = ~vT— uR
dt TETH

eRjiwe™" = v (Io + EIleiwt) — K (RO + sRleiwt)

= ~Ip — pRy + €™’ (vI; — pRy)

To zeroth order €° we obtain again the condition for stationarity

R = — 1
n+ tw
Finally, multiplying numerator and denomicator both by its complex conjugate we
obtain
TH e :
R, = + 2 - I =: (a + 1)1
1 (H2‘|‘w2 H2‘|‘w2) 1 ( )1

with a := J£5b := 5

“2+w2 ;1,2—|—w2 .
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Now we are going to analyse the I for both models.

df _ PO . (N—-T—-R)-IT—(u+~)-1

at I=4 - (N-I—R)-V—(y+up)-I

d
dt
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Now we are going to analyse the I for both models.

I=80. (N-T-R)-I—(p+7v)-I 4I=L.(N-I-R)-V—(y+p)-I

&l

MLO(N—Io—Ro)
K15 (L+a) Vot (v+m) +i(w+ 470V )

2L (N—Io—Ry)

1= ; Vi
R (1+a) o~ (N —To—Ro)+(v+1)+i(w+70010 )

Iy I, =
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Now we are going to analyse the I for both models.

I=80. (N-T-R)-I—(p+7v)-I 4I=L.(N-I-R)-V—(y+p)-I

&l

MLO(N—Io—Ro)
K15 (L+a) Vot (v+m) +i(w+ 470V )

2L (N—Io—Ry)

1= ; Vi
R (1+a) o~ (N —To—Ro)+(v+1)+i(w+70010 )

Iy I, =

Putting both in a I; := sz - form, we have the specific values of each abreviation.
cir =2 (1+ a) I +(v+u)  crv=30+a)Vo+ (v +p)
dir = w + Jbly diry = w + 71.bVo
fir =% (N — Ip — Ro) I firv = (N — I — Ry)

Essencially, the only difference between the models is given by —% (N — Iy — Ry) in
the SIR.
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Multiplying both terms of I by the complex conjugate c—id we obtain the amplitude
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Multiplying both terms of I by the complex conjugate c—id we obtain the amplitude
of I, for models.

I, = fir = f1rRV

. . \ Y
cIrt+tdIR crrv+idigy © 1

_ JIRCIR - ( —fIRdIR _ JIRVCIRV . ( —fIRVAIRV .
L= ((C%R+d%R> T (C%R+d%R>) 5= <(C%Rv+d%RV> T (C%RV‘*‘d%RV)) Vi
I, := fl + 1, I := (CC + 'Ly)‘/l

fc

_Je _ —fd_
c2_|_d2

T A
and I = y := g

Being I 2 ¢ :=



The Full SIRUV and comparison with SIR model

Finally, from the ODE for the infected mosquitos

d 9
—V = —(M(t)— V) —vV
dt N



The Full SIRUV and comparison with SIR model

Finally, from the ODE for the infected mosquitos
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Finally, from the ODE for the infected mosquitos

d v
v = ZM@) =V —vV
dt N
v 2 M1,
1 — .
LIy — (Mo — Vo)) + v + iw — 2(Mo — Vo)y
k
Vi o= :
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Finally, from the ODE for the infected mosquitos

d 0
—V = —(M((#) —V)I —vV
dt N
2 M1,
i= 35 : 9
~Jo — (My — Vo)) + v + iw — (Mo — Vp)y
k
Viii= ,
g+ th
with the coefficients g := %(IO — (My — Vo)) + v, h:=w— %(MO — Vb)y and
k:=2ZMI.

Multiplying both, numerator and denominator by the complex conjugate ( g — th)

_ kg . { —kh 5 A~
Vi = o+ e +1 o+ R = Vi +1V;
where the real part is ‘N/l 1= gzli—ghz and the imaginary is ‘71 1= QZZLLZT
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The Full SIRUV and comparison with SIR model

We can now substitute the complex amplitude of V; in the amplitude of I

I = (z+iy)- (Vi +iV)
I, = w‘71—y‘71+i<w‘71+y‘71)

I := I 4l
where the real part is I, :=xV; — y‘Afl and the imaginary is Vii=zxV; + y‘N/l

And then we can obtain the complex amplitude for R;, by substituting the value of
the complex amplitude of I

R, = (a+ib)- (I +ily)
R1 = afl — bfl —|— /) (afl —I— bfl)

R1 — .ﬁl —|— ’Lﬁl
where the real part is ﬁl 1= afl — bIAl and the imaginary part is 1/%1 = aIAl + bfl.
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So we have already obtained the first part of the real cos function for the three
variables

I(t) = I*+e- (I + il})e™?

R(t)

R* + ¢ (Ry + iR;)e™"

V(t) V*+e. (Vi +iVp)e™?
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So we have already obtained the first part of the real cos function for the three
variables

I(t) = I*+e- (I + il})e™?

R(t) = R*+¢-(Ry +iRy)e™"
V(t) = Vi+e- (Vi+iV;)e™!

And for the second part of the real cos function
I(t) = I*+e- (I, — il})e ™!

R(t) R* + e - (Rl — iRl)e_i"’t

V() V*4e-(V; —iVy)e !



The Full SIRUV and comparison with SIR model

Combining the results for e*“! and e ! we obtain the real response of each variable.

I(t)=I"+¢e-A;-cos(w(t+ ¢r1))
R(t) =R*+e€-Agr-cos(w(t+ ¢r))
V(it)=V* +e-Ay:cos(w(t+ pv))

with the real amplitude A and real phase ¢ calculated from the complex amplitude,

via
Ap=24/I2 + I? @1 = —arctan (%)

Ar = 2/ R? + R? pr = —arctan (;>

\/—
Av = 24/ VZ4+ V2 v = —arctan (&>



The Full SIRUV and comparison with SIR model

Comparing the amplitude and the phase numerically we have:

SIR SIRUV
eA; = 0.001955 eA; = 0.000774
o1 = —0.248730 o7 = —0.260094

Essencially, the only difference is in the amplitude for both models.
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The Full SIRUV and comparison with SIR model

We can join both models in the same plot and replace 3 of SIR by gﬁ‘ in order to
have the stationary states approximated.

0.2235
0.223
0.2225
0.222
0.2215
0.221
0.2205

0.22

0.2195

0.219
74955  749.6  749.65  749.7  749.75
R(®)

SIRUV

Comparing the two models we can say that are not such different, the diferences in
the amplitudes of I are in order of 0.001, so it is basically the same for both models.

So, once more, we can say that mosquitos do not add any information to models.



Thank you for your attention!

“I try to be considerate and always sterilize
my stinger before biling into a new vichim.”




