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Hematopoiesis and stem cells

Hematopoiesis leads to the production and regulation of blood cells.
Stem cells differentiate in mature blood cells, under the action of growth factors.
The hematopoiesis is located in the bone marrow.

The growth factor mainly involved in the regulation of red blood cells production is the
famous EPO.

Stem cells have unique capacities of differentiation and to generate identical cells.



- Hematopoiesis and stem cells

Primitive Committed P Mature
Stem Cells Stem Cells HERUrR0E~. Cells
EE— —_— B cells
—)‘g i, ;|: :]—> ‘g §> T cells
CLP Pro-T
3 —_— NK cealls
Haematopoietic stem cell Q( @

-0 - -

Dendritic cells

Long term  Short term h;llmpotneonrt D'ffef‘en"'la.r|on .! E

Self -renewal @)
GMP

CMP

Reya et al. 2001 Nature 414:105-111 ,3



Periodic Hematological Diseases

They are diseases affecting blood cells and characterized by significant oscillations
of blood cells counts, varying from days to months.

Because of their dynamical properties, these diseases offer an almost unique
opportunity for understanding the hematopoiesis process.

> Periodic auto-immune hemolytic anemia, red blood cells, 16 - 17 days;
> Cyclical thrombocytopenia, platelets, 20 - 40 days:;

» Cyclical neutropenia, all blood cells, 19 - 21 days:

> Periodic chronic myelogenous leukemia, all blood cells, 40 - 80 days.
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The Mackey's model

Hematopoiesis has been studied mathematically since 1978 by Mackey and his group.
Mackey proposed the first model.
It consists in a system of two compartments: proliferating and resting phase.
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By integrating over the age and using the boundary conditions, we obtain the
following system.

O;_':'(t) =—(o+ B(N())N(t)+2p(t,2),

) =-7PO+pE.0)- p(t. ),
=—yP{)+ BIN({))N()— p(t, 7).



By the characteristics’ method, we obtain

da {p(o,a—t)e”, O<t<a,

st — t,a) =
dt P(t.2) p(t—a,0)e”, O0<ac<t.

Then, we obtain

S Ppta e if0<t<a,
p(t’a)_{ﬂ(N(t—a))N(t—a)e7"", if 0<ac<t.

Fort>r

p(t, 7) :,B(N(t—r))N(t—r)e_”.

C©=—(5+A(N®)N® +2¢ "B(N(E-1)N(t-2),

C(;—T(t) =—yP®) +B(N®))N () —e " B(N(t—7))N(t—7).



T O=-(E+ANO)INO+2e7B(NE-)NE-7). @

A steady state of this equation is a stationary solution N > 0.

It satisfies
—(6+B(N))N+2e 7 p(N)N =0.
Then

provided that r<£|n( 2£(0) j
y \(BQO)+o6



The linearization of equation (1) about N leads to
dx
— (t) = ax(t) + bx(t —7),
dt

with

a=—(5+p(N)+ B (N)N),
b=2e7 (B(N)+B'(N)N).
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Cell cycle variability

Many authors have tried to improve Mackey's model, particularly to better
take into account cell cycle duration.

Cell cycle duration variability has been the subject of numerous modeling
works (for instance, Alarcon and Tindall (2007), and Tyson and Novak
(2001)).

In this work, we focus on the influence of the number of cells on the cell
cycle durations.
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b =—(5+pB(N())n, a>0,t>0, (2)
2f+2z S gnl 0= a< i NE) t50,

n(t,0) = 2 p(t, (N (1)), t >0, (3)
p(t,0) = B(N ()N (), t>0. (4)

7:10,+90) — [0,+0) is an increasing function.
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Integrating (2) with respect to the age variable and
using the condition (3) we obtain

N'(t) = —(5+,B(N (t)) N({)+2p(t,z(N())), t>0. (5

Using the method of characteristics, we obtain for
t>7z(N(1))

p(t, (N (1)) =
e " MUIB(N (t—z(N®)))N (t—z(N())). (6)
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We deduce that N (t) satisfies the following state-dependent
delay differential equation.

N'(t) =—(o+ B(N(t))N(t)
+2e_”('\'(t)),8(N(t—r(N(t))))N(t—r(N(t))). (7)
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The existence and uniqueness of a solution of (7) defined

on [0, +o0) for an initial condition belonging to C*, the space of
continuously differentiable function on [-7
Mallet-Paret et al. (1994).

0], follows from

max ?

N'(t) =—(5+ B(N(t))N(t)
+2e‘”(N(t)),B(N(t—r(N(t))))N(t—r(N(t))). (7)

A steady state N > 0 of equation (7) satisfies

SN =(2e‘”(“) —1)ﬂ(N)N.
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(7) has two steady states N =0 and N = N > 0, provided that
- Linf o0 = = nj 22O 8)
gl y \(PO)+o
If (8) holds, then N =0 is unstable.
If (8) does not hold, then N =0 is L.A.S.

The characteristic equation for the trivial steady state is given by
Ao(N) = XA+ 6 + 3(0) — 26(0)e 1T A0

Considering A as a function of real A, one obtains that Ag is an
increasing function with a unique real root A\g € R. When (8)
holds, then Ag(0) < 0, so A\g > 0, which proves the instability of

the trivial steady state.
Conversely, when (8) does not hold, Ag(0) > 0 and g < 0. One

can show that all roots A £ Ao of A satisfy Re(\) < Ao.
Consequently, the local asymptotic stability straightforwardly

follows when (8) does not hold.
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y \(PO)+o
then N = 0 is locally asymptotically stable.

If

o> L 20)
y %)

then N = 0 is globally asymptotically stable.
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Consider the Lyapunov function V : R™ — IR™ given by

X2

V(x):?.

Define p: R™ - R" by p(x) = xexp(2arx/2x), XelR",
: i 1 n(28(0) )
with 0 < o < min< », ——In( j
24 {7/ i - A

Let N be a solution of (7) such that, fort >0, 6 €[-r,,,0],
V(N(t+0)) < p(V(N())) .

Then, fort>0

V (N(t)) < ~[5-2e M) gg) |
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We focus on the L.A.S of N™ and a local Hopf bifurcation.

We assume the function z is given by z(x) = uz(x), where
12 1S a positive parameter.

N'(t) =—(5+ B(N())N(t)
4 2eW<N“’>/3(N (t— 7 (N (t)))) N (t—uz (N(D)))-

We assume that ro<lln( =) ] That is
y \BO)+o

£(0)>06 and Og,u<%(O)yln(ﬂz('g)(i)gj'—;.
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The positive steady state N* depends then on the parameter ;1 and
is given implicitly by

(2677 V6D 1) B(N*(w) =6, < [0.7).

Thus, by using the Implicit Functions Theorem, N* is a decreasing
continuously differentiable function of .

Taking i« as a real parameter, our purpose is to prove the existence
of the local Hopf bifurcation.

The characteristic equation associated with N* () is written as

21



AN, 1) = X+ b(p) + c(p)e MHFIN (1),

where, for 1 € [0, 11),

*

b(ye) = & + B(p) + pF (N*(p))a(p)e N ),

c(p) = —28(p)e (N (),

a () = 298N G)IN* (1), B () = BN (1) +5 (N (1))N* (1) .
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N*(11) is locally asymptotically stable for ;» = 0 and the stability
can be lost as j« increases away from 0. with 1 < 7, only if purely
imaginary characteristic roots appear.

We investigate the existence of purely imaginary roots. Using

1 — 2e=7(N" (1)) < 0, it is obvious that

A(0, 1) = b(p) + c(pe) > 0, so A = 0 is not a characteristic root.

Let w > 0. Separating real and imaginary parts, we obtain

{ w = c(p)sin(wpT (N*(1))),
b(p) = —c(u)cos(wut (N*(1))).

One can note that if jw is a purely imaginary root then so is —iw.
A necessary condition to have purely imaginary roots is

| c(pe) [>] b(p) | -
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Let w > 0. Separating real and imaginary parts, we obtain

{ w = c(p)sin(wpF (N*(p))),
b(p) = —c(p)cos(wut (N*(1))).

One can note that if jw is a purely imaginary root then so is —iw.
A necessary condition to have purely imaginary roots is

| c(p) [>] b(p) |-

Adding' the squares of both sides in the last system, eigenvalues

iw(1), with o(u) >0 and 1 €| 0, "), must satisfy

o) =(c’ () —0b*(w))? forue|0,u").
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Then, we look for x| 0, 4" ) solution of

ur(N” (1)) (c?(u) —bz(ﬂ))% = arccos( (’u)j+2k7z k e N.
c(u)

That Is a solution of

arccos( (ﬂ)j+2k7z
elil) —=0, ,ue[O,,u*).
7(N"(10)) (€% (1) —b* () )2

Z () = p—

Z,(0)<0 and lim Z, (x) = —ox.

>

If Z, has no rooton |0, ."), then Z;, with j > k, does not

have roots.
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