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The interest is focused on studying the number of cases of infection in a population of K computers using the block-structured state-dependent event (BSDE) approach. The BSDE approach provides the
possibility of considering non-exponential models with correlated flows, but keeping tractable the dimensionality of the underlying Markov chain.

The work is inspired in the study of the number of recovered and infected individuals in the SIS scalar stochastic epidemic models. It considers an extension of a flow of external infections as well as the

possibility of dealing with batch infection taking place when the infection initiated at an individual computer is immediately propagated to other computers of the network.
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Scalar version The model BSDE model
K = size of the population, \ J
SIS MODEL: S(t) = number of susceptible computers at time t, S(t) + 1(t) = K. CTMC: (X, V)= {(Xi,Y:,Y2); t > 0}
| (t) = number of infected computers at time t. : : ol : : > :
Number of infected computers at time t. Infection phase at time t. Recovery phase at time t.

The evolution of the epidemic is described by the process { L{£); £> 0}, with state space {0,...,K}. It

s modeled as a birth and death process with rates 4; - é (K-1),0<i<K, u=vi0<iz<K, The infinitesimal generator Q of this CTMC has a finite level-dependent upper Hessenberg structure

with matrix blocks:

S is the contact rate from an infected computer to a susceptible computer and y is the individual ———
recovery rate. Qia =lm®R;, 1=i=K Tr(mm) = A, R (n;n) = -AR,
1. The existence of a permanent external source of infection, with rate 3. T Rl 0<i<K=1i+1<j< —0 =0, . N
B ! Q=1 ®In0=I=K-11+1<5) =K [T (mm) = A 1°(mm’), m" + m, Ri(n;n") = ARR(n;n"), n" = n,
Two A = < )(K ), 0<i<K L . _ | 1
s = (1-8)T° 1) + (1= @R, 0<i<K || Ti(mm) = A mm), 1<j <K-ij, Ri(mn') = ARRE(m;n").
extensions:{ > paich infections: Given that I(t)=i, the next infection takes places after an S =i Slw+HI-o0In®T)
exponentially distributed time with rate ; causing the infection of ] susceptible Al : Rate of an exponential sojourn time which ends when an infection takes place (with or without phase
| computers with probability gj;, for 0<i<K-1and 1< < K-I. change) or simply when the infection phase changes.
\ / Ii(m;m’) : Probability that the effective contact causes the infection of | susceptible computers and a

transition from the phase m to the phase m', given that X,=I.

Particularizations of T{ and R

(Dg,D})
i i i Characteristic matrices of two auxiliary MAPs of orders M and N, with fundamental rates A! and AR.
the EXt|nCt|0n tlme T; =%D}), 0<i<K-1, T{‘i ’1'31 'D' 0<i<K-1i+1<j<K, R =%D§, 1<i<K, ﬁ%z%Di 1<i<K /

Probability mass function

N...,n= Number of infections until the first time at which X, = O, given that the current system state is
(i, m, n). (Every computer can be infected several times before the extinction time)

Number of infections during (0,t]

Xt = P{Nimn = k}, for (i,m,n) € yandk > O‘ These probabilities satisfy:

xgmn=6ko,1§m§|\/l,1§n§N,kzo,

CTMC (x,V, N) = {(xt,ytl,ytZ, N t > o} . N, is the number of infections in the interval (0, ],
given that the initial state is (i10,mo,Nno,0).

| M min{k,K-i} M i . _ . o 1 _ 2 _
Xk — /{L.ﬁ 3 0mm)XE (L= S (1-6i) Y Z mmxd Transient probabilities are defined by Pimnk(t) = P{X; =1, Yi = m, Y{ = n, N; = k},
m;m =1 m=1 and the initial probability Pimnk(0) = 0 ¢i,m.n.k)(i0,mo.n0,0)-
.R ~ o ~ ad ~
" ;—In Z Rmn)xk . + ZRl(n X | 1<i<K 1<m<M 1<n<Nk=>0 Laplace transform of PD):  Pimk(® = [ € Pimi®at, RS 2 0. | 5, (9Q(s) = by, k > 0,
Q. -d,, fO<i<Ki=], r | |
N ’ = —00i,€g((Mo — N +1p), Ifk =0,
QO =9 Q if1<i<Kj=i-1 Ok = < 0, ifk>1
X Ogxgs otherwise, >
®imn(2) = E[zNm™ ], (i,m, v 2= 1 Pom(@ =1,1<m<M, 1<n<N, —Siiseg((Mo — YN+ ng), ifk =0,
), andforl < /<K Bik = < me{l “p pl—j k—j(S)QI i’ fl<k<K,
D@ = 7= Z P Pinio(@ + (1~ 8) lejz 2}1 M)y - ZF?(n )iy (Z)+ZR1(n )P 1m @ | P ifk= KL,
= n=1

m'=m n'+n

1<i<K 1l<m<M1<n<N This system can be written in matrix form as | Q(2®@(2) = b.

Marginal distribution p ,(t) = P{N. = k}, for k> 0. IRl e ARt Z(immesx7 Bimnk(S)-

m(t) = Zkfp = D mMn® r>1 where mi () = 37 K Pimnk(D).

Moments (.mNeS, Laplace transform
MO = P{Nimn < o}, MK = E[Nimn(Nimn — 1)---(Nimn — k+ 1)1, k > 1, (i,m,n) € Sxy. flimn(8) = [ €S mina (Ddt
4 i
min{k K1} ) | < | —0iiy€q((My — DN+ np), ifr =0,
QLMK = — QMK k>1, where M*=(M§...,MK), M=(M, foro<i< N 0 _
; <I’> < G > I rmr(s)(Q_ g (K+l)g) _ tr, [ e {O, 1, 2}’ C{ — < —(1—5i0) Z;:ljmi—j (S)Qi—j,i’ ifr=1,
Q(r)(l) = 4 ' .9~ e i
d . —(1-dio) Z}:l <12mi_,- (9 + 2T (s)) Q. fr=2
4 p
Numerical examples
/) Exponential kernel: Ex _ _ Ex _
() Exp D§*=-1, Df*=1 \ / 10021 10021 O 0 0 0
/ 2 3 0 \ / 000 (/v) MAP kernel with negative correlation (-0.48890): | D, = 0 -100221 O ,D7=| 001002 0 0.99219
, . : 0 0 -2575 2234925 0 22575
(/) Erlang kernel: |Dg=| 0 -3 3 |[,Df=| 000
\ 0 0 -3 / \ 300
—0.87478 0.87478 0 0 0 O
(v) MAP kernel with positive correlation (0.43482): Df = 0 087478 0 Di=| 078730 0 0.08748
o . y -19 O y 1.71 0.19
(/i) Hiperexponential kernel: | Dy = , DY = . 0 0 976311 7.28085 0 87.47826
0 -019 0.171 0.019
,0,p) =(1.0,0.01,0.25 _
(7,5,6) = (1.0,0.01,0.25) o 00 | BB (HLED (DLDY) (DLED (K, .7,9,0) = (50,0.75,1.00.01,0.25)
’Yl ] — - ] " ] " i o
9 =0.2 E[N] 19.08 16.25 6.4  6.86 0 ———— « —
Kemela(D%, D) Rernela(E1,ED) n _{W =" B
TR ki a o ) a(N) | 30.65 35.61 2340 | 24.64 ol | Lo
S = A === / 6-0.3 E[N] 3651 2491 10.02 10.94 I
Em- | gl 4 o(N)  55.51 53.39 3341 3570 i
w 1 0 =0.4 E[N] 87.69 298 1719 19.32
ot e il o(N) | 122.93 8821 5128  55.84 .
e e L L e ———— " _ - %
oW m ® v m 2w ® s oW w @ 0 =0.5 E[N]  307.89 87.16 3398  39.58
Kernels(D{, DF) Kernela(BS, EF) o(N) | 382.22 165.38 1 87.42 97.64
== - =S 0-06 E[N] 2030.63 21650 83.83 10248
Gl ' - a(N)  2189.27 362.01 175.94 204.26
Sy 1§ ' 0-07 EN| 3648259  666.24 302.01  399.46
- / il / o(N) 3674585  941.93 478.98 598.59
il d i ~ |
EHLM; | ﬂw#u;fw—ﬂi’n = 0=0.8 E[N] 2575690.2 | 2412.78 2285.95 3588.12
8 ' N) | 25760227 | 2889.69  2625.56 3971 56 Figure 2. E[N] and o(N,) as a function of the kernel choice
Figure 1. E[N] and o(N) as a function ofB and K o t t

Table 1. E[N] and 6(N) as a function of 6 and the kernel choice




