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1. Introduction

Stochastic epidemic models

• Andersson and Britton (2000) conclude that stochastic models are to be pre-
ferred when their analysis is possible.

• Symplifying assumptions: exponential distribution, homogeneous popula-
tions, random-mixing.

• Small communities include hospitals (Forrester and Pettitt 2005; Artalejo and
Lopez-Herrero 2011; Wang et al. 2011), educational establishments (Stone et al.
2008; Artalejo et al. 2010), prisons (Hotta 2010) or small herds (de Keijer et al.
2008).

• Stochastic techniques: Markov chains, branching and diffusion processes.



The basic reproduction number R0

It is a common practice to define R0 as follows (Heesterbeek and Dietz 1996,
Hethcote 2000):

R0 is the expected number of secondary cases produced, in a completely sus-
ceptible population, by a typical infective individual during its entire period of
infectiousness.

Most remarkable features of R0 (Roberts 2007; Li et al. 2011)

(i) the threshold value of R0 that establishes that an infection persists only if
R0 > 1,

(ii) the usefulness of R0 as a direct measure of the control effort required to
eradicate the infection.



Methods to calculate R0 include among others the survival function, the next-
generation method, the eigen values of the Jacobian matrix and the constant
term of the characteristic polynomial (Li et al. 2011, comparative analysis).

Flows of R0

(i) Few of the calculation methods agree with each other.

(ii) Few of which produce the true average number of secondary infections.

(iii) In the case of seasonal changes, large epidemics can happen even if R0 < 1
and the final size may not be an increasing function of R0 (Bacaër and Gomes
2009).

Li, Blakeley and Smith? (2011) provide an excellent overview including exhaus-
tive discussion of the problems with R0, the comparative analysis of methods for
its calculation and an examination of a number of alternatives to R0.



Remark: Most of the existing works assume a deterministic point of view to
calculate R0. In particular, linearization is assumed to ignore that the infectious
disease itself diminishes the availability of susceptibles (Diekmann and Heester-
beek 2000, Sect. 5.1). The consequence is that R0 is clearly not the exact
expected number of secondary cases.

Goal of this talk: We present two alternative measures, namely

Re0: the exact reproduction number,

Rp: the population transmission number.

Both quantities do not count the number of contacts affecting to individuals
which have been previously infected. As a result, Re0 and Rp correct the effect
of the repeated contacts that R0 overestimates.



2. The SIS stochastic model

• Closed population model of N individuals.

• Classified either as susceptible or infective individual.

• Susceptible can be infected, then they recover and return to the susceptible
pool.

• Evolution of the epidemic:
• Birth and death process {I(t); t ≥ 0}.

• I(t) : number of infective individuals at time t.

• S = {0, 1, ..., N} (0 is an absorbing state).



• Classical SIS rates

• Infection rate λi = β
Ni(N − i).

• Recovery rate μi = γi.

• R0 =
β
γ denotes the classical reproduction number.

Figure 1. States and transitions of the birth and death model
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The SIR stochastic model

• Closed population model of N individuals.

• Classified as susceptible, infective or removed individuals.

• Susceptible can be infected, then they recover and become immune.

• Evolution of the epidemic:
• Bidimensional CTMC {(I(t), S(t)); t ≥ 0}.

• I(t) : number of infective individuals at time t (I(0) = m ≥ 1).

• S(t) : number of susceptibles at time t (S(0) = n).

• S = {(i, j); 0 ≤ j ≤ n, 0 ≤ i ≤ m+n−j} (ST = {(0, j); 0 ≤ j ≤ n}).



• Classical SIR rates

• Infection rate λij = β
Nij.

• Recovery rate μi = γi.

• R0 =
β
γ is the classical reproduction number.
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Figure 2. States and transitions of the SIR epidemic model
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3. The exact reproduction number Re0

Re0 is the exact number of secondary cases produced by a typical infective indi-
vidual during its entire infectious period.

Differences between R0 and Re0

• Re0 does not count the number of contacts taking place between the typi-
cal infective individual and any contacted individual which has previously been
infected. Then, the real measurement of the disease spread is obtained.

•R0 is only defined at the time of invasion, when the typical infective is introduced
into a completely susceptible population. In contrast, Re0 can be defined at all
times.

• Re0 is a random variable, rather than an expected number, so we can study
its whole probability distribution (i.e., probability mass function, expectation and
higher order moments).

By assuming that the invasion starts at t = 0 with I(0) = 1, the expectation
Re0 = E [Re0 |I(0) = 1] amounts to the exact quantification of the disease
transmission aimed in the definition of R0.



The SIS model

We decompose the contact rate as βi = β∗i +
eβi−1, for 1 ≤ i ≤ N, where

β∗i =
β
N (N − i): the individual rate at which the typical infective contacts with

the susceptible population,

eβi−1 = β
N (i−1)(N− i): the superposition of the contact rates of the remaining

i− 1 infectives.

For a given i, 0 ≤ i ≤ N , we define

ϕi(z) = E
h
zRe0 |I(0) = i] =

P∞
k=0 z

kP {Re0 = k |I(0) = i} , |z| ≤ 1.

mk
i = E [Re0(Re0 − 1) · · · (Re0 − k + 1) |I(0) = i] , 1 ≤ i ≤ N, k ≥ 0

(m0
i = 1).



Four possibilities for the next event:

i) recovery of the tagged (typical) infective,

ii) recovery of a non-tagged infective,

iii) effective contact between the tagged infective and any susceptible individual,

iv) effective contact between a non-tagged infective and any susceptible.

Conditioning on the first transition, we have

ϕi(z) =
γ

βi + γi
+
γ(i− 1)
βi + γi

ϕi−1(z) +
β∗i

βi + γi
zϕi+1(z)

+
eβi−1

βi + γi
ϕi+1(z), 1 ≤ i ≤ N.



By differentiating equations for ϕi(z) k ≥ 1 times, and setting z = 1, we get

mk
i =

γ(i− 1)
βi + γi

mk
i−1 +

βi
βi + γi

mk
i+1 +

β∗i
βi + γi

kmk−1
i+1 ,

1 ≤ i ≤ N, k ≥ 1.

In particular, Re0 = m1
1.

We next summarize a recursive scheme for the computation of
n
m1
i ; 1 ≤ i ≤ N

o
.

The proposed scheme only deals with algebraic operations involving positive
terms, which guarantees that the computation is stable.

Minor modifications lead to the computation of higher order moments.



Theorem 1 The expected values
n
m1
i ; 1 ≤ i ≤ N

o
are computed by the equa-

tions

m1
N =

(N − 1)DN−1
NaN−1 + βN−1

,

m1
i =

Di + βim
1
i+1

ai + βi
, i = N − 1, ..., 1,

where the coefficients ai and Di, for 1 ≤ i ≤ N − 1, are given by

a1 = γ,

ai =
γ(iai−1 + βi−1)
ai−1 + βi−1

, 2 ≤ i ≤ N − 1,

D1 = β∗1,

Di = β∗i +
γ(i− 1)Di−1
ai−1 + βi−1

, 2 ≤ i ≤ N − 1.



A direct computation of the probabilities xki = P {Re0 = k |I(0) = i} , for 1 ≤
i ≤ N and k ≥ 0, can be done with the help of the following equations:

xki = δk0
γ

βi + γi
+
γ(i− 1)
βi + γi

xki−1 + (1− δk0)
β∗i

βi + γi
xk−1i+1

+
eβi−1

βi + γi
xki+1, 1 ≤ i ≤ N, k ≥ 0.



The SIR model

We define the generating functions

ϕij(z) =
Pj
k=0 z

kP {Re0 = k |(I(0), S(0)) = (i, j)} , (i, j) ∈ ST , |z| ≤ 1,

which verify the following triangular system of equations:

ϕij(z) =
γ

βij + γi
+
γ(i− 1)
βij + γi

ϕi−1,j(z) +
β∗ij

βij + γi
zϕi+1,j−1(z)

+
eβi−1,j
βij + γi

ϕi+1,j−1(z), (i, j) ∈ ST ,

where β∗ij =
β
Nj and eβi−1,j = β

N (i− 1)j, for (i, j) ∈ ST .



After appropriate differentiation, we derive recursive equations for the factorial
moments mk

ij

mk
ij =

γ(i− 1)
βij + γi

mk
i−1,j +

βij

βij + γi
mk
i+1,j−1

+
β∗ij

βij + γi
kmk−1

i+1,j−1, (i, j) ∈ ST , k ≥ 1.

For k = 0, we observe that m0
ij = P {Re0 <∞ |(I(0), S(0)) = (i, j)} = 1,

for (i, j) ∈ ST . Then, the above equations can be efficiently calculated in the
recursive order k ≥ 1, 0 ≤ j ≤ n and 1 ≤ i ≤ m+ n− j.

A direct method for the recursive computation of the probability mass function of
Re0 (i.e., xkij = P {Re0 = k |(I(0), S(0)) = (i, j)} , for 0 ≤ k ≤ j) can also
be developed.



Figure 3 R0, Re0 and Rp versus the contact rate β. We assume an SIS model
with γ = 1 so R0 = β, and N = 100, 1000, 10000.
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As far as β increases and N decreases, we observe higher differences between
R0 and Re0. When β = 20, we find that Re0 = 5.35, for N = 100, and
Re0 = 8.50, for N = 10000.



4. The population transmission number Rp

Rp is the exact number of secondary cases produced by all currently infective
individuals prior to the first recovery.

Differences between R0 and Rp

• Rp aims to count the exact number of effective contacts, irrespectively of the
identity of the infective involved in each contact, during the elapsed time until
the first recovery occurs.

• Rp can be defined either at the invasion time or at any time after the invasion.

If t = 0 and I(0) = 1, then we denote its expected value asRp= E [Rp |I(0) = 1] .



The general birth-and-death process in S = {0, 1, ..., N}

Dynamics of the generating functions

Ψi(z) =
μi

λi + μi
+ (1− δiN)

λi
λi + μi

zΨi+1(z), 1 ≤ i ≤ N.

Calculation of the kth factorial moments

Mk
i = (1− δi,N−1)k

N−2X
l=i

Mk−1
l+1

lY
j=i

λj

λj + μj
+ δk1

N−1Y
j=i

λj

λj + μj
,

1 ≤ i ≤ N − 1, k ≥ 1,

The boundary equationsM0
i = 1, 1 ≤ i ≤ N, andMk

N = 0, k ≥ 1, respectively
reflect that P {Rp <∞ |I(0) = i} = 1, for 1 ≤ i ≤ N, and Rp = 0, when
I(0) = N.



The mass probability function

yki = P {Rp = k |I(0) = i} = μi+k
λi+k + μi+k

i+k−1Y
l=i

λl
λl + μl

, 0 ≤ k ≤ N − i.

Moreover, for i = N, we have y0N = 1.

The SIS model (particular case)

The expected values, M1
i , and the variances, σ

2
i = M2

i +M1
i − (M1

i )
2, are

reduced to the simple formulas

M1
i =

(N − i)R0
R0 +N

, 1 ≤ i ≤ N,

σ2i =
N(N − i)R0((N − i+ 1)R0 +N)

(2R0 +N)(R0 +N)2
, 1 ≤ i ≤ N.



The SIR model

The mass probabilities ykij = P {Rp = k |I(0) = i, S(0) = j} , for i ≥ 1 and
j ≥ 1, are given by

ykij =
μi+k

λi+k,j−k + μi+k

i+k−1Y
l=i

λl,i+j−l
λl,i+j−l + μl

, 0 ≤ k ≤ j.

The expected values and the variances

M1
ij =

jR0
R0 +N

, (i, j) ∈ ST ,

σ2ij =
NjR0((j + 1)R0 +N)

(2R0 +N)(R0 +N)2
, (i, j) ∈ ST .



5. Applications to the control of the infectious disease

Control of infectious diseases includes vaccination, isolation and culling (Keeling
and Rohani 2008).

Vaccination based on R0 reduces R0 > 1 to 1−v (fraction of susceptibles) such
that

R0(1− v) < 1 −→ vc = 1−
1

R0
.

The critical vaccination coverage vc is interpreted in terms of the critical pro-
portion of the population that should be vaccinated to prevent the spread of the
epidemic.

Replacing R0 by the expected value Re0, we get

vec =

⎧⎨⎩ 1− 1
Re0

, if Re0 > 1,

0, otherwise.



Figure 4a Critical vaccination levels vc and vec versus R0. We assume an SIR
model with (m,n) = (1, 999) and γ = 1 so R0 = β.
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Example of the reduction obtained. R0 = 10 (e.g. chickenpox) then Re0 =
5.45712. As a result, we obtain vc = 0.9 (i.e., 90% of the susceptible population
should be vaccinated) and vec = 0.81.



The eradication of the disease requires a random time which depends not only
on the transmission speed but also on its variability. We notice that the variance
of Rp increases as a function of j. In fact, the variance is 0, if j = 0. Mass
vaccination of the entire susceptible population seems unfeasible due to logistical
difficulties and cost constraints.

In what follows, we use the probability mass function of Rp of the SIR model
to determine a vaccination strategy going beyond the levels vec and vc.

Rp has a decreasing probability mass function if and only if R0 < N. The idea
now is to guarantee that the decay of the disease spread is controlled by a fixed
level ρ ∈ (0, 1).

To reach this goal, for a fixed (i, j), we look for the large number of susceptibles
j such that

yk+1ij < ρykij, (ρ-control decay of Rp).



But it amounts to

vc(ρ) = 1−
ρ

1− ρ

Ã
1

R0
− 1

N

!
.

It is now easy to check that

vc(ρ) > vc⇔ ρ <
µ
2− R0

N

¶−1
,

so we propose to employ the vaccination policy based on the ρ-control decay of
Rp only if R0 ∈ (1, N) and ρ < (2−R0/N)

−1. In such a case, the critical level
vc(ρ) provides not only the coverage required to prevent a major outbreak but
also a control on the decay of the distribution of the random variable Rp.



Figure 4b The critical vaccination coverage vc(ρ) for the levels ρ = 0.2, 0.3, 0.4.
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For a fixed R0, vc(ρ) is decreasing with ρ, reflecting that a smaller level ρ implies
a stronger control of the decay.

For R0 = 5, we notice that vc(0.2) = 0.95, vc(0.3) = 0.91 and vc(0.4) = 0.86,
while vc = 0.8 and vec = 0.75.



6. Conclusions and References

• The basic reproduction number is the most useful concept of the mathematical
epidemiology. Despite its fundamental role and the apparent simplicity of its defi-
nition, R0 is an intricate concept. When a deterministic approach is adopted, the
impact of the depletion of susceptibles due to the infection process is neglected.
As a result, R0 counts for excess the reproductive potential.

• This talk presents two alternative measures called the exact reproduction num-
ber, Re0, and the population transmission number, Rp, which provide a real
measurement of the spread of a disease represented by a stochastic epidemic
model.

• Since we deal with Markov chains with a finite population size, the epidemic
dies out in a finite time with probability one. This fact is indeed an important
difference between the deterministic and the stochastic approaches. Despite that
R0, Re0 and Rp are not actually a threshold, the three measures are valuable to
quantify the spread and severity of the infectious disease.



• The classical reproduction number, R0, aims to measure the expected number
of secondary cases. The alternative measures, Re0 and Rp, are random vari-
ables so we can calculate not only their expected values but also their complete
distributions (i.e., probability mass functions, higher order moments).

• R0 is only defined at the time of invasion, when a typical infective is introduced
into a virgin population. In contrast, Re0 and Rp can be defined at the initial
invasion time or at any later time.

•When control measures are possible, R0 provides a measure of the effort needed
to prevent a major outbreak. Once the repeated contacts are discounted, the
expected value Re0 contributes to the vaccination policy by providing the exact
vaccination coverages vec. The use of the probability mass function of Rp leads to
a coverage level vc(ρ), which provides not only the preventive coverage required
but also a control on the decay of the distribution of the number of secondary
infections.



References

Andersson, H., & Britton, T. (2000). Stochastic Epidemic Models and Their
Statistical Analysis. Springer Lecture Notes in Statistics 151. Springer Verlag:
New York.
Artalejo J.R., Economou, A., & Lopez-Herrero, M.J. (2010). On the number of
recovered individuals in the SIS and SIR stochastic epidemic models. Math.
Biosci., 228, 45-55.
Artalejo, J.R., & Lopez-Herrero, M.J. (2011). The SIS and SIR stochastic
epidemic models: A maximum entropy approach. Theor. Popul. Biol., 80, 256-
264.
Bacaër, N., & Gomes, M.G.M. (2009). On the final size of epidemics with sea-
sonality. Bull. Math. Biol., 71, 1954-1966.
de Koejier, A.A., Diekmann, O., & de Jong, M.C.M. (2008). Calculating the
extinction of a reactivating virus, in particular bovine herpes virus. Math. Biosci.,
212, 111-131.
Diekmann, O., & Heesterbeek, J.A.P. (2000). Mathematical Epidemiology of
Infectious Diseases: Model Building, Analysis and Interpretation. Wiley Series in
Mathematical and Computational Biology. Chichester: Wiley.
Forrester, M., & Pettitt, A.N. (2005). Use of stochastic epidemic modeling to
quantify transmission rates of colonization with methicillin-resistant Staphylo-
coccus aureus in an intensive care unit. Infect. Control Hosp. Epidemiol., 26,
598-606.



Heesterbeek, J.A.P., & Dietz, K. (1996). The concept of R0 in epidemic theory.
Stat. Neerl., 50, 89-110.
Hethcote, H.W. (2000). The mathematics of infectious diseases. SIAM Rev., 42,
599-653.
Hotta, L.K. (2010). Bayesian melding estimation of a stochastic SEIR model.
Math. Popul. Stud., 17, 101-111.
Keeling, M.J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and
Animals. Princeton University Press: Princeton.
Li, J., Blakeley, D., & Smith?, R.J. (2011). The failure of R0. Comput. Math.
Methods Med. Vol. 2011, Article ID 527610.
Roberts, M.G. (2007). The pluses and minuses of R0. J.R. Soc. Interface, 4,
946—961.
Stone, P., Wilkinson-Herbots, H., & Isham, V. (2008). A stochastic model for
head lice infections. J. Math. Biol., 56, 743-763.
Wang, J., Wang, L., Magal, P., Wang, Y., Zhuo, J., Lu, X., & Ruan, S. (2011).
Modelling the transmission dynamics of methicillin-resistant Staphylococcus au-
reus in Beijing Tongren hospital. J. Hosp. Infect., 79, 302-308.

THANKS!


