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Introduction
I We consider a discrete time model for describing the evolution of an

age-structured population, which is divided into k groups or intervals of age.

I For each group or interval of age, we need to specify two rates:
– The survival rate, si (for i = 1, . . . , k − 1), namely, the proportion of individuals of

group i which will survive to the next period of time (becoming individuals of
group i + 1).

– The reproductivity or fertility rate, fi (for i = 1, . . . , k ), namely, the average number
of surviving offsprings of each individual of group i .

I Let us denote by Ni(t) (for i = 1, ..., k ) the number of individuals of group i in a
given period of time, t .

I The relationship between consecutive periods of times can be expressed by
means of the following Leslie matrix:



N1(t)
N2(t)
N3(t)

...
Nk(t)


=



f1 f2 · · · fk
s1 0 · · · 0
0 s2 · · · 0
... ... . . . ...
0 · · · sk−1 0





N1(t − 1)
N2(t − 1)
N3(t − 1)

...
Nk(t − 1)



The statistical problem

I N1(t) must be understood as a random variable with sampling density

N1(t) ∼ N(f1N1(t − 1) + · · · + fkNk(t − 1);σ1),

where f1, . . . , fk and σ1 are unknown parameters.

I In the same way, Nj(t) (for j = 2, . . . , k ) must be understood as a random variable
with sampling density

Nj(t) ∼ N(sj−1Nj−1(t − 1);σj),

where sj−1 and σj (for j = 2, . . . , k ) are unknown parameters.

Bayesian approach

I Let us assume that we have observed n(t) = (n1(t), . . . ,nk(t)) for t = 1, . . . ,m. We
will use Bayesian MCMC algorithm for making inferences on the parameters,
f1, . . . , fk , σ2

1, . . . , σ
2
k and s1, . . . , sk−1.

I We take as prior distributions for the parameters:

fj ∼ log N(µj, τ
2
j ),

σ2
j ∼ IGamma(αj, βj),

for j = 1, . . . , k and

sj ∼ U(0,1)
for j = 1, . . . , k − 1.

Application to real data

I In Holmes et al. (2007), the population of the Steller sea lions (Eumetopias
jubatus) located in the Alaska coast is studied with an age-structured model from
a frequentist point of view. It is observed a significant decline in the population of
sea lions. Data were collected along 27 years since 1978 to 2004, although there
are several years with partial or complete missing observations. Data consist of
two groups of age: pup and adult classes.

I We apply the Bayesian MCMC algorithm in order to analyze these data.

I The original deterministic equations are:
N1(t) = f2N2(t − 1)
N2(t) = s1N1(t − 1)

where f2 and s1 are the parameters of the models.
I We assign vaguely informative prior distributions: log-normal distribution with

mean equal to 0 and variance equal to 100, for f2; uniform distribution between 0
and 1, for s1; inverse-gamma distribution with mean equal to 1 and variance equal
to 10 for σ2

2.
Then, we run 3 chains with a total number of 20000 iterations (10000 to burn-in)
and thinning equal to 5.

I The posterior means, standard deviations and quantiles of the corresponding
chains of each parameter are shown in Table 1.

Mean SD 2.5% 50% 97.5%
f2 0.6911 0.0274 0.6403 0.6900 0.7490
s1 0.9753 0.0261 0.9031 0.9837 0.9994
σ2

1 1.0446 0.2679 0.6632 0.9993 1.7091
σ2

2 3.5695 0.6870 2.4960 3.4756 5.1909
λ 0.8208 0.0199 0.7789 0.8215 0.8579

eigen1 0.4570 0.0059 0.4464 0.4566 0.4701
eigen2 0.5430 0.0059 0.5299 0.5434 0.5536

Table 1: Statistics of the simulated posterior distributions of parameters.

I In this model, the estimated kernel densities from the MCMC samples of the
posterior distributions are unimodal, and a post hoc analysis of the chains did not
show a significant departure from convergence.

Figure : Density plots of the posterior distributions of parameters

Data Cloning

I The data cloning method is a general technique to compute maximum likelihood
estimates along with their asymptotic variances by means of the computation of
the posterior distributions by using a MCMC methodology (see Lele et al. (2007)
and Lele et al. (2010)).

I The data cloning algorithm can be summarized in the following steps:
I Step 1: Create k -cloned data set n(k) = (n,n, . . . ,n), where the observed data
vector is repeated k times.

I Step 2: Using an MCMC algorithm, generate random numbers from the
posterior distribution that is based on a prior π(θ) and the cloned data vector
n(k) = (n,n, . . . ,n), where the k copies of n are assumed to be independent of
each other. In practice, any proper prior distribution can be used.

I Step 3: Compute the sample mean and variances of the values (θ)j, j = 1, . . . ,M
(for M iterations of the MCMC run) generated from the marginal posterior
distribution. The ML estimates of (θ)j correspond to the posterior mean values
and the approximate variances of the ML estimates correspond to k times the
posterior variances.

I We complete the analysis of the Steller sea lions data by applying the data cloning
technique. The confidence intervals (95%) for the parameters, based on the Wald
approximation, are shown in Table 2.

2.5% 97.5%
f2 0.6423 0.7375
s1 0.9934 1.0057
σ2

1 0.4956 1.3405
σ2

2 2.1266 4.3699
λ 0.8017 0.8591
eigen1 0.4452 0.4624
eigen2 0.5376 0.5548

Table 2: Confidence intervals (95%) for parameters
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