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A general framework to optimise cancer therapeutics: A general framework to optimise cancer therapeutics: 
designing mathematical methods along 3 axes designing mathematical methods along 3 axes 

          1. Modelling the behaviour of growing cell populations on which drugs act:  1. Modelling the behaviour of growing cell populations on which drugs act:  
proliferating tumour proliferating tumour and healthy and healthy cell populations in homogeneous tissues, cell populations in homogeneous tissues, 
including physiological control by molecular circadian clocksincluding physiological control by molecular circadian clocks

          2. Modelling the control system, i.e., fate of drugs in the organism, at the 2. Modelling the control system, i.e., fate of drugs in the organism, at the 
molecular and whole body levels by molecular and whole body levels by molecular pharmacokinetics-molecular pharmacokinetics-
pharmacodynamics:pharmacodynamics:           PK-PD (ideally WBPBPKPD =            PK-PD (ideally WBPBPKPD = whole body whole body 
physiologically based...physiologically based...))

          3. Optimising the control: 3. Optimising the control: dynamically dynamically optimised control of drug delivery flows optimised control of drug delivery flows 
using time-dependent objectives+constraintsusing time-dependent objectives+constraints

    (JC Math Mod Nat Phenom 2009; La Recherche 2010; Personalized Medicine 2011)(JC Math Mod Nat Phenom 2009; La Recherche 2010; Personalized Medicine 2011)
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At the origin of any tissue proliferation: the cell division cycle,At the origin of any tissue proliferation: the cell division cycle,
  a controlled process by which one cell becomes twoa controlled process by which one cell becomes two

Physiological (Physiological (circadian clockscircadian clocks, hormones), hormones)
/ therapeutic (/ therapeutic (drugsdrugs) control:) control:
- on transitions between phases- on transitions between phases
      (G(G11/S, G/S, G22/M, M/G/M, M/G11))
-  on death rates inside phaseson death rates inside phases
      (apoptosis or necrosis) (apoptosis or necrosis) 
-  on the inclusion in the cell cycleon the inclusion in the cell cycle
      (G(G00 to G to G1 1 recruitment)recruitment)

S:=DNA synthesis; GS:=DNA synthesis; G11,G,G22:=Gap1,2; M:=mitosis:=Gap1,2; M:=mitosis
Mitosis=M phaseMitosis=M phase

Mitotic human HeLa cell (from LBCMCP-Toulouse)Mitotic human HeLa cell (from LBCMCP-Toulouse)

... a control that is disrupted in cancer 
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                                      Autonomic nervous systemAutonomic nervous system

Circadian chronobiology (1): the circadian systemCircadian chronobiology (1): the circadian system

INSERM  U 776 Rythmes Biologiques et CancersLévi, Lancet Oncol 2001 ; Mormont & Lévi, Cancer 2003

A system of molecular clocksA system of molecular clocks
that gives a 24 h rhythm tothat gives a 24 h rhythm to
all cells in our organismall cells in our organism

0. Circadian clocks and clinical cancer chronotherapeutics0. Circadian clocks and clinical cancer chronotherapeutics



Circadian chronobiology (2): cancer chronotherapyCircadian chronobiology (2): cancer chronotherapy 

Infusion flowMetastatic colorectal cancer

(Folinic Acid, 5-FU, Oxaliplatin) ChronoConstant

16%16%31%31%        Neuropathy gr 2-3Neuropathy gr 2-3

51%51%30%30%        Responding rateResponding rate

14%14%74%74%        Oral mucositis gr 3-4Oral mucositis gr 3-4

        ToxicityToxicity

<10-3

<10-2

<10-4

p

Lévi et al. Lévi et al. 
JNCI 1994 ;JNCI 1994 ;
Lancet 1997 ;Lancet 1997 ;
Lancet Onc 2001Lancet Onc 2001

INSERM  U 776 Rythmes Biologiques et Cancers

How does it work? Proved impact of circadian clocks both on cell drug
 detoxication enzymes and on cell division cycle determinant proteins

0. Circadian clocks and clinical cancer chronotherapeutics0. Circadian clocks and clinical cancer chronotherapeutics



Circadian chronobiology (3): chronotherapy technologyCircadian chronobiology (3): chronotherapy technology

Time-scheduled delivery regimenTime-scheduled delivery regimen
Infusion over 4 days every other week Infusion over 4 days every other week 

AF
300 mg/m2/d

Time (local h) 04:0016:00

5-FU
600 - 1100 mg/m2/dL-OHP

25 mg/m2/d 

Multichannel programmable ambulatoryMultichannel programmable ambulatory
injector for intravenous drug infusion injector for intravenous drug infusion 
(pompe Mélodie, Aguettant, Lyon, France)(pompe Mélodie, Aguettant, Lyon, France)

Can such therapeutic schedules be improved?Can such therapeutic schedules be improved?
INSERM  U776  Rythmes Biologiques et Cancers

0. Circadian clocks and clinical cancer chronotherapeutics0. Circadian clocks and clinical cancer chronotherapeutics



•  Centralised programmationCentralised programmation
•  Any modulation of delivery rateAny modulation of delivery rate
•  4 reservoirs (100-2000 mL)4 reservoirs (100-2000 mL)
•  2 independent channels2 independent channels
•  Rates from 1 to  3000 mL/hRates from 1 to  3000 mL/h

Multichannel pumpMultichannel pump
for chronotherapyfor chronotherapy

Over 2000 cancer patients registered inOver 2000 cancer patients registered in  clinical Phase I, II or III trialsclinical Phase I, II or III trials

Circadian chronobiology (4): Chronotherapy today in the clinic Circadian chronobiology (4): Chronotherapy today in the clinic 

INSERM  U 776 Rythmes Biologiques et Cancers

Images from the Chronotherapy Unit, Paul-Brousse Hospital, Villejuif, France

0. Circadian clocks and clinical cancer chronotherapeutics0. Circadian clocks and clinical cancer chronotherapeutics



Simple pharmacokinetics-pharmacodynamics (PK-PD)Simple pharmacokinetics-pharmacodynamics (PK-PD)
of a cancer drug acting on cell populations: 6 state variablesof a cancer drug acting on cell populations: 6 state variables

Healthy cells (jejunal mucosa)Healthy cells (jejunal mucosa) Tumour cellsTumour cells

f(C,t)=F.f(C,t)=F.CC/(C/(C5050
+C+C)).{1+cos 2 (t-.{1+cos 2 (t-

SS)/T})/T}
g(D,t)=H.g(D,t)=H.DD/(D/(D5050

+D+D)).{1+cos 2 (t-.{1+cos 2 (t-
TT)/T})/T}

(PK)(PK)

(« chrono-PD »)(« chrono-PD »)

(homeostasis=damped harmonic oscillator)(homeostasis=damped harmonic oscillator) (tumour growth=Gompertz model)(tumour growth=Gompertz model)

(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)

Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicityAim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity  

1. A simple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics

Main work hypothesis: Main work hypothesis: TT==SS+12+12  

  oxaliplatin infusion flow oxaliplatin infusion flow 



Optimal control, step 1: deriving a constraint Optimal control, step 1: deriving a constraint 
function from the enterocyte population modelfunction from the enterocyte population model

Minimal toxicity constraint, for 0<Minimal toxicity constraint, for 0<ττAA<1<1  (e.g. (e.g. ττAA =60%): =60%):

Other possible constraints:Other possible constraints:

1. A simple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics



Optimal control, step 2: deriving an objective Optimal control, step 2: deriving an objective 
function from the tumoral cell population modelfunction from the tumoral cell population model

Objective function 1: Eradication strategy: minimize Objective function 1: Eradication strategy: minimize GGBB(i(i), where;), where;

Objective function 2: Stabilisation strategy: minimize Objective function 2: Stabilisation strategy: minimize GGBB(i(i), where;), where;

or else:or else:

oror

1. A simple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics



Optimal control problem (eradication): defining a lagrangian:Optimal control problem (eradication): defining a lagrangian:

then:then:

If GIf GBB and F and FA A were convex, then one should have:were convex, then one should have:

……and the minimum would be obtained at a saddle-pointand the minimum would be obtained at a saddle-point
        of the lagrangian, reachable by an Uzawa-like algorithmof the lagrangian, reachable by an Uzawa-like algorithm

1. A simple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics



Optimal control: results of the tumour Optimal control: results of the tumour 
stabilisation strategy using this simple one-drug  PK-PD modelstabilisation strategy using this simple one-drug  PK-PD model
(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)

Objective: Objective: minimising the maximumminimising the maximum  
of the tumour cell populationof the tumour cell population

Constraint : Constraint : preserving the jejunal mucosa preserving the jejunal mucosa 
according to the patient’s state of healthaccording to the patient’s state of health

(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)

Solution : optimal infusion flow i(t) adaptable to the patient’s state of health Solution : optimal infusion flow i(t) adaptable to the patient’s state of health 

(according to a tunable parameter(according to a tunable parameter  AA: : here preserving here preserving AA=50% of =50% of 

enterocytesenterocytes))  

i BB AA

1. A simple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics



  

One cell divides in two: a physiologically controlled process at cell and tissue levelsOne cell divides in two: a physiologically controlled process at cell and tissue levels
in all healthy and fast renewing tissues (gut, bone marrow…) that is in all healthy and fast renewing tissues (gut, bone marrow…) that is disrupted in disrupted in 
cancercancer

(from Lodish et al., Molecular cell biology, Nov. 2003)(from Lodish et al., Molecular cell biology, Nov. 2003) 

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



Why model the cell division cycle?Why model the cell division cycle?

• Need for detailed models of cell proliferation to represent the action of anticancer Need for detailed models of cell proliferation to represent the action of anticancer 
drugs drugs in cell populationsin cell populations with: with:

          1) Cell cycle phase specificity1) Cell cycle phase specificity
          2) Different pharmacological targets on cell cycle control2) Different pharmacological targets on cell cycle control
          3) Action with same targets on tumour cells 3) Action with same targets on tumour cells and on healthy cellsand on healthy cells
                                                                                  (taking into account (taking into account toxic side effects toxic side effects of anticancer drugs)of anticancer drugs)

• To this aim, even independently of therapeutics, need for models with:To this aim, even independently of therapeutics, need for models with:
        1) Phase and age-in-phase, possibly cyclin, structure1) Phase and age-in-phase, possibly cyclin, structure
        2) Transitions between cell division cycle phases (G2) Transitions between cell division cycle phases (G11/S, G/S, G22/M)/M)

        3) Exchanges between quiescent and proliferative phases (G3) Exchanges between quiescent and proliferative phases (G00/G/G11))

        4) Targets for control of cell proliferation (physiological / by drugs)4) Targets for control of cell proliferation (physiological / by drugs)

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



Frame: Age-structured PDE model for the cell division cycleFrame: Age-structured PDE model for the cell division cycle
(here only linear models will be considered, but nonlinear models with feedback are possible)(here only linear models will be considered, but nonlinear models with feedback are possible)

(from B. Basse et al., J Math Biol 2003)

In each phase In each phase ii, a McKendrick linear model:, a McKendrick linear model:

di , Ki->i+1 constant or periodic
 w. r. t. time t (1 i I, I+1=1)≤ ≤

ni:=cell population density in 
phase i ; di:=death rate;
vi :=progression speed;

Ki-1->i:=transition rate
(with a factor 2for i=1)

Death rates Death rates ddii: (“loss”), “speeds” : (“loss”), “speeds” vvii and phase transitions  and phase transitions KKi->i+1 i->i+1 are model targetsare model targets

for physiological (e.g., circadian) or therapeutic (drug) control for physiological (e.g., circadian) or therapeutic (drug) control (t)(t)
(t)(t): e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]: e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]
(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892,  2003;  recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, (Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892,  2003;  recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, 
2011)2011)

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



The simplest case: 1-phase model with divisionThe simplest case: 1-phase model with division

(Here, (Here, vv(a)(a)=1, =1, a* a* is the cell cycle duration, and is the cell cycle duration, and τ(< 1)  τ(< 1)  is the timeis the time

during which the 1-during which the 1-periodic controlperiodic control  ψψ  is actually exerted on cell division)is actually exerted on cell division)

Then it can be shown that  the eigenvalue problem:Then it can be shown that  the eigenvalue problem:

    has a unique positivehas a unique positive
11-periodic-periodic eigenvector  eigenvector NN, with a positive eigenvalue , with a positive eigenvalue λλ, , solution, if solution, if d(t)=dd(t)=d, , K(t,a)=K(a)K(t,a)=K(a)
of Lotka’s (=Euler’s) equation:of Lotka’s (=Euler’s) equation:

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



According to the Krein-Rutman theorem (infinite-dimensional form of theAccording to the Krein-Rutman theorem (infinite-dimensional form of the
Perron-Frobenius theorem), there exists a nonnegative first eigenvalue Perron-Frobenius theorem), there exists a nonnegative first eigenvalue λ λ such that,such that,
if                                           , then there exist if                                           , then there exist NNii, bounded positive solutions to the problem:, bounded positive solutions to the problem:

(the weights(the weights ϕ ϕi i 0≥0≥  being solutions to the dual problem); this can be proved by  being solutions to the dual problem); this can be proved by 

usingusing
a generalised entropy principle (GRE). a generalised entropy principle (GRE). Moreover, if the control (dMoreover, if the control (dii    oror  KKi_i+1i_i+1) is ) is 

periodic, so are the eigenvectors Nperiodic, so are the eigenvectors Nii and weights  and weights ϕϕii, with the same period., with the same period.

with a real numberwith a real number  ρ ρ such that for all such that for all ii::

Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005

JC, Michel, Perthame C. R. Acad. Sci. Paris Series I (Math.) 2006; Proceedings 2007 of ECMTB Dresden 2005JC, Michel, Perthame C. R. Acad. Sci. Paris Series I (Math.) 2006; Proceedings 2007 of ECMTB Dresden 2005

      ρ.

      General case: General case: II phases (last = mitosis, or  phases (last = mitosis, or MM phase) phase)
2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



Proof of the existence of a unique growth exponent Proof of the existence of a unique growth exponent λλ,,  the same for all phases the same for all phases ii, , 
such that the                                         are bounded, and asymptotically periodic if such that the                                         are bounded, and asymptotically periodic if 
the control is periodicthe control is periodic

Example of control (periodic control case): 2 phases, control on GExample of control (periodic control case): 2 phases, control on G22/M transition by /M transition by 

24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator 24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator 
model)model)

 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)

  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period

  

λλ: a growth exponent governing the cell population behaviour: a growth exponent governing the cell population behaviour

time t

““Surfing on the Surfing on the 
exponential growth exponential growth 
curve”curve”

(= the same as adding(= the same as adding
an artificial death terman artificial death term
+ λ + λ to theto the  ddii))

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



Experimental measurements to identify transition kernels Experimental measurements to identify transition kernels KKi_i+1i_i+1

(and simultaneously experimental evaluation of the first eigenvalue (and simultaneously experimental evaluation of the first eigenvalue λλ))
In the simplest model with In the simplest model with dd=0 =0 (one phase with division) and assuming (one phase with division) and assuming K=K(x)K=K(x)
(instead of indicator functions              , experimentally more realistic transitions):(instead of indicator functions              , experimentally more realistic transitions):

Interpreted as: if Interpreted as: if ττ is the age in phase at division, or transition: is the age in phase at division, or transition:

With probability density (experimentally identifiable):With probability density (experimentally identifiable):

withwith

Whence (by integration Whence (by integration 
along characteristic lines):along characteristic lines):

i.e.,i.e.,

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



A mathematical result: A mathematical result: 

The growth exponent The growth exponent λλ increases with desynchronisation    increases with desynchronisation   
where desynchronisation is defined as a measure of phase overlapping at transitionwhere desynchronisation is defined as a measure of phase overlapping at transition

  

This relies on the Proposition: (Th. Ouillon’s report 2010; Billy et al. Math. 
Comp. Simul. 2012): For a family (fi) of pdfs with fixed first moment ei 
and varying second moment σi, λ increases with each σi

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation



A working hypothesis that could explain differences in A working hypothesis that could explain differences in 
responses to drug treatments between healthy and cancer tissuesresponses to drug treatments between healthy and cancer tissues

Healthy tissues, i.e., cell populations, would be well synchronisedHealthy tissues, i.e., cell populations, would be well synchronised
w. r. to proliferation rhythms and w. r. to circadian clocks, whereas…w. r. to proliferation rhythms and w. r. to circadian clocks, whereas…
...tumour cell populations would be desynchronised w. r. to both, and ...tumour cell populations would be desynchronised w. r. to both, and 
suchsuch
proliferation desynchronisation would be a consequence of an escapeproliferation desynchronisation would be a consequence of an escape
by tumour cells from central circadian clock control messages, just asby tumour cells from central circadian clock control messages, just as
they evade most physiological controls, cf. e.g., Hanahan & Weinberg:they evade most physiological controls, cf. e.g., Hanahan & Weinberg:
    

Question: Question: 
is cell cycle phaseis cell cycle phase
desynchronisation desynchronisation 
another hallmark another hallmark 
of cancer of cancer in cell in cell 
populationpopulations? s? 

2. Cell population PDE model of proliferation2. Cell population PDE model of proliferation

Hanahan & Weinberg, Cell 2000Hanahan & Weinberg, Cell 2000 Hanahan & Weinberg, Cell 2011Hanahan & Weinberg, Cell 2011



Experimental identification of the basic model parametersExperimental identification of the basic model parameters
with with FUCCI reporters FUCCI reporters on a 2-phase model Gon a 2-phase model G11 / S-G / S-G22-M-M

(so far, without circadian control)(so far, without circadian control)

3. Model identification3. Model identification



FUCCI: a movie (Sakaue-Sawano, 2008) on HeLa cellsFUCCI: a movie (Sakaue-Sawano, 2008) on HeLa cells

3. Model identification3. Model identification



Another FUCCI movie on NIH3T3 cellsAnother FUCCI movie on NIH3T3 cells
(C. Feillet, F. Delaunay, IBDC Nice, 2012)(C. Feillet, F. Delaunay, IBDC Nice, 2012)

3. Model identification3. Model identification



FUCCI reporters + individual cell tracking (non trivial...):FUCCI reporters + individual cell tracking (non trivial...):
Measuring time intervals: GMeasuring time intervals: G11 and total division cycle durations and total division cycle durations

Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed  by Frédérique Billy at INRIA Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed  by Frédérique Billy at INRIA 

3. Model identification3. Model identification



Phase transitions w.r.t. age Phase transitions w.r.t. age xx
Pdfs Pdfs f(x) f(x) fitted from data on 50 NIH 3T3 proliferating cellsfitted from data on 50 NIH 3T3 proliferating cells

  

FUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid mediumFUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium

3. Model identification3. Model identification



Computing the growth exponent, fitting data to p.d.f.s:Computing the growth exponent, fitting data to p.d.f.s:
Gamma p.d.f.s were best fits and yielded simple computations:Gamma p.d.f.s were best fits and yielded simple computations:

2-phase Lotka’s equation simply reads:2-phase Lotka’s equation simply reads:

... which yields here ... which yields here λλ  = 0.039 = 0.039 hh-1-1

3. Model identification3. Model identification

(and yields mean doubling time (and yields mean doubling time TTd d =17.77 h, with mean cell cycle time =17.77 h, with mean cell cycle time TTc c ==17.95 h)  17.95 h)  



Phase transitions w.r.t. age Phase transitions w.r.t. age xx
Transition rates Transition rates K(x)K(x)  from pdfs from pdfs f(x)f(x)  on NIH 3T3 healthy cellson NIH 3T3 healthy cells

and resulting population evolutionand resulting population evolution

G1 to SG1 to S M to G1M to G1

GG11 to S to S S/GS/G22/M to G/M to G11

GG11

S/GS/G22/M/M  

(cell synchronisation “by hand”)(cell synchronisation “by hand”) Asynchronous theoretical cell growthAsynchronous theoretical cell growth

Exponential growth of theoretical total Exponential growth of theoretical total 

cell population: here, cell population: here, λλ=0.039 h=0.039 h-1-1  

One complete observed cell cycleOne complete observed cell cycle

3. Model identification3. Model identification

Recalling that in the model
f = p.d.f. of phase duration time
and K = phase transition kernel:



Human physiology: circadian rhythmsHuman physiology: circadian rhythms
in the Human cell division cyclein the Human cell division cycle

 Example of circadian rhythm in normal (=homeostatic) Human oral mucosa for Example of circadian rhythm in normal (=homeostatic) Human oral mucosa for 
Cyclin E (control of GCyclin E (control of G11/S transition) and Cyclin B (control of G/S transition) and Cyclin B (control of G22/M transition)/M transition)
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Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean ± S.E.M. in oral mucosa Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean ± S.E.M. in oral mucosa 
samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.

(from Bjarnason et al. Am J Pathol 1999)(from Bjarnason et al. Am J Pathol 1999)

3. Model identification (a priori knowledge)3. Model identification (a priori knowledge)



Extended cascade model of the mitotic oscillatorThe cascade incorporates cyclin synthesis and degradation,activation of the phosphorylated form M+of cdc2 kinasethrough dephosphorylationintotheformM by phospatase cdc25,which is itself activated by cyclin through phosphorylation. Cdc2 kinase is inacivated by the kinase wee1.Inactive cyclin protease X+is phosphorylatedintoactive form Xby cdc2 kinase

CyclinP+

P

M+

X+ X

M

νι νδ

ν1ν2
ν3ν4

χδχ25

ωεε1
Χψχλινπροτεασε

Χδχ2κινασε

ΠερτρανσχριπτιονΝυχλεαρ ΠΕΡ

ΠερµΡΝΑ ΠΕΡ0
ν1ν2

ΠΕΡ1 ν3ν4 ΠΕΡ2

νσ

νµ

νδ

κ1 κ2

Μινιµαλ µοδελ φορ ∆ροσοπηιλαχιρχαδιανχλοχκΤηεµοδελ ισ βασεδ ον τηε νεγατιϖε φεεδβαχκ εξερτεδβψ νυχλεαρ ΠΕΡ ον περτρανσχριπτιον,ανδον µυλτιπλε πηοσπηορψλατιον οφ ΠΕΡ

Αφτερ Γολδβετερ (1997)

?

A                A connection between cell cycle andA                A connection between cell cycle and
circadian clocks: circadian clocks: Cdk1 opens G2/M gate; Wee1 inhibits Cdk1; Per2 inhibits Wee1Cdk1 opens G2/M gate; Wee1 inhibits Cdk1; Per2 inhibits Wee1

Mitotic oscillator model by Albert Goldbeter, 1997, here with 
circadian entrainment by a square wave standing for Wee1 

(Matsuo commented by Schibler,Science, Oct. 2003)

3. Model identification3. Model identification3. Model identification (a priori knowledge)3. Model identification (a priori knowledge)



(from You et al. 2005, Breast Canc. Res. Treat. 2005)

More connections between the cell cycle and circadian clocksMore connections between the cell cycle and circadian clocks  
1) The circadian clock gene Bmal11) The circadian clock gene Bmal1
might be a synchroniser in each cell might be a synchroniser in each cell 
between Gbetween G11/S and G/S and G22/M transitions /M transitions 

(Wee1 and p21 act in antiphase)(Wee1 and p21 act in antiphase)

2) Protein p53, the major sensor2) Protein p53, the major sensor
of DNA damage (“guardian of theof DNA damage (“guardian of the
  genome”) , is expressedgenome”) , is expressed
according to a 24 h rhythm (notaccording to a 24 h rhythm (not
altered in Bmal1altered in Bmal1-/--/- mice) mice)

(from Fu & Lee, Nature 2003)

(from Bjarnason 1999)

3. Model identification (a priori knowledge)3. Model identification (a priori knowledge)



(a 12 h-delay between the two cosines was determined as the one that maximised the (a 12 h-delay between the two cosines was determined as the one that maximised the λλ))   

Circadian control on phase transitions: two cosines for ψ1 and 
ψ2 

Resulting evolution of the clock-controlled cell population: Resulting evolution of the clock-controlled cell population: λλ=0.024 h=0.024 h-1 -1 (<0.0039 h(<0.0039 h-1-1)  )  
    

λλ=0.024 h=0.024 h-1-1  

Adding circadian control on transitionsAdding circadian control on transitions3. Model identification, with artificial 3. Model identification, with artificial 
gatinggating

Here we putHere we put
K(x,t) = K(x,t) = κκ(x).(x).ψψ(t)(t)
with with κκ = FUCCI-identified = FUCCI-identified
and and ψψ = a cosine = a cosine

[cosine: in the absence of a[cosine: in the absence of a
better identified clock thus far] better identified clock thus far] 



Phases: asynchronous cell growth Global: sheer exponential cell growth

[Agreement between
model and data on
the first division] 

F. Billy

3. Model identification, with artificial 3. Model identification, with artificial 
gatinggating



Steep synchronisation within the cell cycle Stepwise cell population growth

F. Billy

(1) healthy(1) healthy cell cell
populationpopulation

(=(=sharpsharp gating by  gating by 
circadian clock)circadian clock)

3. Model identification, with artificial 3. Model identification, with artificial 
gatinggating



Soft synchronisation within the cell cycle Stepwise cell population growth

F. Billy

(2) cancer(2) cancer cell cell
populationpopulation

(=(=lazylazy gating by  gating by 
circadian clock)circadian clock)

3. Model identification, with artificial 3. Model identification, with artificial 
gatinggating



F. Billy

3. Model identification, with artificial 3. Model identification, with artificial 
gatinggating



Circadian + pharmacological control on transitionsCircadian + pharmacological control on transitions
K(x,t) = K(x,t) = κκ(x).(x).ψψ(t).[1-g(t)]: (t).[1-g(t)]: κκ FUCCI-identified,  FUCCI-identified, ψ ψ clock, g optimal drug effect clock, g optimal drug effect 

4. Drug delivery optimisation: control of eigenvalues4. Drug delivery optimisation: control of eigenvalues

green and red: green and red: ψψ  

blue: blue: [1-g][1-g]..ψψ
((g blocks g blocks ψ)ψ)



Theoretical chronotherapeutic optimisationTheoretical chronotherapeutic optimisation
of a 1st eigenvalue (cancer growth) under the constraintof a 1st eigenvalue (cancer growth) under the constraint

of preserving another 1st eigenvalue (healthy tissue growth)of preserving another 1st eigenvalue (healthy tissue growth)

4. Drug delivery optimisation: control of eigenvalues4. Drug delivery optimisation: control of eigenvalues

(i.e., what if now we add a drug control, setting (i.e., what if now we add a drug control, setting K(x,t) = K(x,t) = κκ(x).(x).ψψ(t).[1-g(t)](t).[1-g(t)]?)?)



Evolution of the two populations: cancer (blue), healthy (green)Evolution of the two populations: cancer (blue), healthy (green)

Circadian control,Circadian control,
no drug infusionno drug infusion

Circadian control,Circadian control,
added drug infusionadded drug infusion

(F. Billy et al. 2011, submitted)(F. Billy et al. 2011, submitted)

4. Drug delivery optimisation: control of eigenvalues4. Drug delivery optimisation: control of eigenvalues



Numerical solution to the optimal infusion problemNumerical solution to the optimal infusion problem
(Uzawa) and effect on eigenvalues, healthy and cancer (Uzawa) and effect on eigenvalues, healthy and cancer 
Infusion scheme Infusion scheme g(t)g(t)

Target eigenvalues:Target eigenvalues:
Cancer (blue)Cancer (blue)
Healthy (green)Healthy (green)

In favour of this approach:In favour of this approach:
- characterises long-term                - characterises long-term                
      trends with one number,trends with one number,
- easily accessible- easily accessible
      target for controltarget for control
- fits to physiologically- fits to physiologically
    structured growth modelsstructured growth models

Its drawbacks:Its drawbacks:
-  deals with asymptotics,deals with asymptotics,
not with transientsnot with transients
-  assumes a linear modelassumes a linear model
  for proliferationfor proliferation
- assumes periodic control- assumes periodic control
  by drugs (but the periodby drugs (but the period
  can be infinitely long)can be infinitely long)

4. Drug delivery optimisation: control of eigenvalues4. Drug delivery optimisation: control of eigenvalues



4. Drug delivery optimisation: control of eigenvalues4. Drug delivery optimisation: control of eigenvalues

What remains to be done to complete the design of this model:What remains to be done to complete the design of this model:

-  Identify actual doubling times and compare them with calculated Identify actual doubling times and compare them with calculated TTd d = ln 2 = ln 2 //  λλ

-  Replace cosines by identified circadian gating functionsReplace cosines by identified circadian gating functions

-  Identify transition p.d.f.s in a broad variety of cell populations, healthy and cancerIdentify transition p.d.f.s in a broad variety of cell populations, healthy and cancer

-  Assess actual (de)synchronisation in cancer vs. healthy proliferating cell populationsAssess actual (de)synchronisation in cancer vs. healthy proliferating cell populations

-  Relate it with the variance of cell cycle phase duration p.d.f.s (i.e., transition kernels)Relate it with the variance of cell cycle phase duration p.d.f.s (i.e., transition kernels)

-  Extend from cell cultures in liquid media to solid tissues (using nonlinear modelling)Extend from cell cultures in liquid media to solid tissues (using nonlinear modelling)



Plasma and cell pharmacokinetics (PK) of 5-fluorouracilPlasma and cell pharmacokinetics (PK) of 5-fluorouracil
 (5-FU) (5-FU)

• Poor binding to  plasma proteinsPoor binding to  plasma proteins

• Degradation +++ (80%) Degradation +++ (80%) by liver DPDby liver DPD

• Cell uptake using a saturable transporterCell uptake using a saturable transporter

• Rapid diffusion in fast renewing tissuesRapid diffusion in fast renewing tissues

• 5-FU = prodrug5-FU = prodrug; main active anabolite = Fd-UMP; main active anabolite = Fd-UMP

• Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8
(Oguri, Mol Canc Therap 2007)(Oguri, Mol Canc Therap 2007)

5. Molecular PK-PD modelling



5-FU catabolism: DPD5-FU catabolism: DPD
(dihydropyrimidine dehydrogenase)(dihydropyrimidine dehydrogenase)

• 5-FU5-FU DPDDPD 5-FU H5-FU H22, hydrolysable [           F, hydrolysable [           FββAlanin]Alanin]

• DPD: hepatic +++DPD: hepatic +++

• DPD: limiting enzyme of 5FU catabolism DPD: limiting enzyme of 5FU catabolism 

• Michaelian kineticsMichaelian kinetics

• Circadian rhythm of activityCircadian rhythm of activity

• Genetic polymorphism +++ (very variable toxicity)Genetic polymorphism +++ (very variable toxicity)

5. Molecular PK-PD modelling



5FU and LV: plasma and intracellular PK5FU and LV: plasma and intracellular PK

PP=5FU=5FU
(plasma)(plasma)

FF=FdUMP=FdUMP
(cell)(cell)

QQ=LV=LV
(plasma)(plasma)

LL=LV (cell)=LV (cell)

5FU cell uptake5FU cell uptake 5FU DPD detoxication in liver5FU DPD detoxication in liverFdUMP extracellular effluxFdUMP extracellular efflux
(by ABC Transporter ABCC11)(by ABC Transporter ABCC11)

Binding ofBinding of
FdUMP to TSFdUMP to TS
to form a to form a reversiblereversible
binary complex Bbinary complex B

Binding of LV toBinding of LV to
FdUMP-TS = B toFdUMP-TS = B to
form a form a stablestable  
ternary complexternary complex

i(t) i(t) = = 5FU5FU
infusion flowinfusion flow

j(t) j(t) = = LVLV
infusion flowinfusion flow

5. Molecular PK-PD modelling



N=nuclear factor nrf2N=nuclear factor nrf2

A=ABC transporter MRP8A=ABC transporter MRP8

Resistance? Induction of ABC Transporter activity byResistance? Induction of ABC Transporter activity by

FdUMP-triggered synthesis of nuclear factor FdUMP-triggered synthesis of nuclear factor nrf2nrf2

Nuclear factorNuclear factor

(e.g., nrf2)(e.g., nrf2)

ABC TransporterABC Transporter
(ABCC11=MRP8)(ABCC11=MRP8)

5. Molecular PK-PD modelling



S=free TSS=free TS

B=binary B=binary 
complexcomplex

T=ternary T=ternary 
complexcomplex

Targeting Thimidylate Synthase (Targeting Thimidylate Synthase (TSTS) by FdUMP:) by FdUMP:
Formation of binary and ternary Formation of binary and ternary TSTS-complexes-complexes

    
    
    
    

F + SF + S F-S = B (FdUMP-TS 2-complex)F-S = B (FdUMP-TS 2-complex)

B + LB + L B-L = T (FdUMP-TS-LV 3-complex)B-L = T (FdUMP-TS-LV 3-complex)

kk11

kk-1-1 kk44

5. Molecular PK-PD modelling



Modelling PK-PD of 5FU [with drug resistance] + LeucovorinModelling PK-PD of 5FU [with drug resistance] + Leucovorin
(action exerted on thymidylate synthase only in the S-G(action exerted on thymidylate synthase only in the S-G22 phase)  phase) 

(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)

5. Molecular PK-PD modelling



Modelling PK-PD of oxaliplatinModelling PK-PD of oxaliplatin
(cytotoxic action exerted on DNA in all phases except M phase)  (cytotoxic action exerted on DNA in all phases except M phase)  

Decay of free DNA

Input i =oxaliplatin infusion
Plasma proteins

Intracellular reduced glutathione

oxaliplatin
infusion

oxaliplatin
infusion

(JC, O. Fercoq, submitted as Springer book chapter, 2013)(JC, O. Fercoq, submitted as Springer book chapter, 2013)

5. Molecular PK-PD modelling



Connecting molecular PK-PD with cell population dynamics: Connecting molecular PK-PD with cell population dynamics: 
Introduction of PK-PD effects on death rates with repairIntroduction of PK-PD effects on death rates with repair

+PK-PD added models: cytotoxic (+PK-PD added models: cytotoxic (death ratesdeath rates) effects ) effects 

5. PK-PD modelling and connection with cell population dynamics

(JC, O. Fercoq, submitted as Springer book chapter, 2013)(JC, O. Fercoq, submitted as Springer book chapter, 2013)



Solution to the chronotherapeutic combined drug delivery optimisation problem Solution to the chronotherapeutic combined drug delivery optimisation problem 

Here, only
cytotoxic
drugs acting
on death rates 

LeucovorinLeucovorin

5FU5FU

OxaliplatinOxaliplatin

5. PK-PD modelling and connection with cell population dynamics

(JC, O. Fercoq, submitted as Springer book chapter, 2013)(JC, O. Fercoq, submitted as Springer book chapter, 2013)



Effects of this optimised periodic drug delivery regimen on growth rates Effects of this optimised periodic drug delivery regimen on growth rates 

Target eigenvalues:Target eigenvalues:
Cancer (blue)Cancer (blue)
Healthy (green)Healthy (green)

5. PK-PD modelling and connection with cell population dynamics

(JC, O. Fercoq, submitted as Springer book chapter, 2013)(JC, O. Fercoq, submitted as Springer book chapter, 2013)



Evolution of the two cell populations, without, then with cytotoxic drugsEvolution of the two cell populations, without, then with cytotoxic drugs

A result not as good as in the previous case, when drugs were applied onA result not as good as in the previous case, when drugs were applied on
transition rates... hence the suggestion of a cytotoxic+cytostatic treatmenttransition rates... hence the suggestion of a cytotoxic+cytostatic treatment
(e.g., 5FU+oxaliplatin+cetuximab): a story to be continued(e.g., 5FU+oxaliplatin+cetuximab): a story to be continued

(Here, drugs act on death rates and not on transition rates ) (Here, drugs act on death rates and not on transition rates ) 

5. PK-PD modelling and connection with cell population dynamics

(JC, O. Fercoq, submitted as Springer book chapter, 2013)(JC, O. Fercoq, submitted as Springer book chapter, 2013)



Modelling effects of cytostatics (CDKIs, TKIs, ...) maintainedModelling effects of cytostatics (CDKIs, TKIs, ...) maintained
on cell cycle phase transition rates [and boundary conditions]on cell cycle phase transition rates [and boundary conditions]

Control on inputs from GControl on inputs from G00 phase may be represented by a multiplicative factor in the phase may be represented by a multiplicative factor in the

  first (Gfirst (G11) boundary condition (which is the same as modifying the first transition rate);) boundary condition (which is the same as modifying the first transition rate);

for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):

New mitosis termNew mitosis term  

New ‘death’ termNew ‘death’ term
(=death + escape(=death + escape

  towards Gtowards G00))  f: f: target of target of 
cytostatic drug,cytostatic drug,
sending cells tosending cells to
quiescencequiescence
(experimentally(experimentally
measurable)measurable)

5. PK-PD modelling and connection with cell population dynamics

(not done thus far, (not done thus far, 
waitinng for PK-PDwaitinng for PK-PD
  of cytostatics...)of cytostatics...)



Tackling another main issue in cancer pharmacotherapeutics:Tackling another main issue in cancer pharmacotherapeutics:
Emergence of drug resistance in cancer cell populationsEmergence of drug resistance in cancer cell populations
(another model of cell population dynamics, with thus far no PK-PD) (another model of cell population dynamics, with thus far no PK-PD) 

Instead of controlling drug resistance at the individual cell level (ABC transporters),Instead of controlling drug resistance at the individual cell level (ABC transporters),
representing the possible emergence of resistant cell clones due to mutationsrepresenting the possible emergence of resistant cell clones due to mutations
occurring at mitoses in a occurring at mitoses in a cell Darwinismcell Darwinism perspective. perspective.

Assumption: Cancer cell populations, under the pressure of a drug-enrichedAssumption: Cancer cell populations, under the pressure of a drug-enriched
environment, may develop (costly) mutations yielding resistant cell clones,environment, may develop (costly) mutations yielding resistant cell clones,
less fit in a drug-free environment, but better survivors in a hostile environment.less fit in a drug-free environment, but better survivors in a hostile environment.

A therapeutic objective, under these circumstances, may be not to eradicate allA therapeutic objective, under these circumstances, may be not to eradicate all
cancer cells (in fact only all drug-sensitive cells), but instead to let some of themcancer cells (in fact only all drug-sensitive cells), but instead to let some of them
live so as to limit the growth of an emergent resistant cell clone (live so as to limit the growth of an emergent resistant cell clone (‘adaptive therapy’‘adaptive therapy’).).

6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance



Carlo MaleyCarlo Maley Robert Gatenby, MDRobert Gatenby, MD**

First international  First international  
Evolution and cancer conferenceEvolution and cancer conference  
SF, June 3-5, 2011, next one in SF, June 3-5, 2011, next one in 
20132013

A soaring theme on the international scene: A soaring theme on the international scene: Evolution and cancerEvolution and cancer

* RG advocates ‘adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 2009  * RG advocates ‘adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 2009  

6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance



    Gatenby’s new paradigm: rational management of cancer burden by ‘adaptive therapy’Gatenby’s new paradigm: rational management of cancer burden by ‘adaptive therapy’

See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011 See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011 

6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance



A first model with ‘resistance phenotype expression’ structureA first model with ‘resistance phenotype expression’ structure

x (0  x <+≤x (0  x <+≤ ∞∞): a resistance phenotype level (e.g., activity of an ABC transporter) ): a resistance phenotype level (e.g., activity of an ABC transporter) 

(A model that is still not able to yield gene polymorphism in cancer cells)(A model that is still not able to yield gene polymorphism in cancer cells)

6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance

A. Lorz et al. M2AN 2013, preprint A. Lorz et al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274http://hal.archives-ouvertes.fr/hal-00714274          



Probability distribution functions in cell populationsProbability distribution functions in cell populations
for the resistant phenotype under the pressure of a drugfor the resistant phenotype under the pressure of a drug

1. No resistance (healthy cells, or sensitive tumour cells) 1. No resistance (healthy cells, or sensitive tumour cells) 

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance

Level curves for nH(x,t) Asymptotic distribution for nH(x) 

t

x

x

A. Lorz et al. M2AN 2013, preprint A. Lorz et al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274http://hal.archives-ouvertes.fr/hal-00714274          



2. Resistance (in a drug-resistant tumour cell clone) 2. Resistance (in a drug-resistant tumour cell clone) 

Probability distribution functions in cell populationsProbability distribution functions in cell populations
for the resistant phenotype under the pressure of a drugfor the resistant phenotype under the pressure of a drug

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance

Level curves for nC(x,t) Asymptotic distribution for nC(x) 

x

xx

t

A. Lorz et al. M2AN 2013, preprint A. Lorz et al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274http://hal.archives-ouvertes.fr/hal-00714274          



2nd point of view : two different drugs, cytotoxic and cytostatic, two resistance 
traits x and y,‘no mutations, exchanges with the environment instead’

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance



Monomorphism in the healthy cell population

No mutations: non-resistant (‘healthy’) cells: starting from a common medium phenotype 
(cytotoxic res.=.5, cytostatic res.= .5), evolution towards the non-resistant (0,0) phenotype 

Model, simulations and figures by Tommaso Lorenzi Model, simulations and figures by Tommaso Lorenzi 

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance



Dimorphism in the cancer cell population

No mutations: Resistant (‘cancer’) cells: starting from the same common medium phenotype 

(.5,.5), evolution towards 2 different resistant phenotypes: (1,0) and (0,1)

Model, simulations and figures by Tommaso Lorenzi Model, simulations and figures by Tommaso Lorenzi 

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance



Mutations again, cytotoxic and cytostatic drugs,Mutations again, cytotoxic and cytostatic drugs,
    with a 1d drug resistance trait with a 1d drug resistance trait x x for both drugsfor both drugs

(Alexander Lorz and Tommaso Lorenzi)(Alexander Lorz and Tommaso Lorenzi)

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance



A. Lorz et al. M2AN 2013, preprint A. Lorz et al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274http://hal.archives-ouvertes.fr/hal-00714274          

Cancer cellsCancer cells Healthy cellsHealthy cells

Cancer cellCancer cell
populationpopulation
extinctextinct

Healthy cellHealthy cell
populationpopulation
preservedpreserved

6. A further challenge for therapeutic optimisation in oncology: dealing with drug 
resistance



CollaboratorsCollaborators

INRIA Bang team and LJLL:INRIA Bang team and LJLL:  Frédérique Billy, Thomas Lepoutre, Alexander Lorz, Frédérique Billy, Thomas Lepoutre, Alexander Lorz, 
Tommaso Lorenzi, Thomas OuillonTommaso Lorenzi, Thomas Ouillon, , BenoBenoît Perthameît Perthame

  
  Other INRIA teams:Other INRIA teams:  Olivier Fercoq, Stéphane Gaubert Olivier Fercoq, Stéphane Gaubert (Maxplus)(Maxplus)

  INSERM U 776 “Biological Rhythms and Cancers” (INSERM U 776 “Biological Rhythms and Cancers” (Francis LéviFrancis Lévi, Villejuif):, Villejuif):
Solid tumours, of Mice and Men (particularly colorectal cancer)Solid tumours, of Mice and Men (particularly colorectal cancer)

Université Paris-Nord (Université Paris-Nord (Claude BasdevantClaude Basdevant): optimisation algorithms): optimisation algorithms

  EU Network EU Network ERASysBio+ ERASysBio+ C5Sys C5Sys Circadian and cell cycle clock systems in cancerCircadian and cell cycle clock systems in cancer
  http://www.erasysbio.net/index.php?index=272http://www.erasysbio.net/index.php?index=272
  ((Bert van der Horst, Shoko Saito, Filippo Tamanini Bert van der Horst, Shoko Saito, Filippo Tamanini at Erasmus University, Rotterdam)at Erasmus University, Rotterdam)
  ((Franck Delaunay, Céline Feillet Franck Delaunay, Céline Feillet at IBDC Nice)at IBDC Nice)


