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A general framework to optimise cancer therapeutics:
designing mathematical methods along 3 axes

1. Modelling the behaviour of growing cell populations on which drugs act:
proliferating tumour and healthy cell populations in homogeneous tissues,
Including physiological control by molecular circadian clocks

2. Modélling the control system, i.e., fate of drugs in the organism, at the
molecular and whole body levels by molecular pharmacokinetics-
pharmacodynamics: PK-PD (ideally WBPBPKPD = whole body
physiologically based...)

3. Optimising the control: dynamically optimised control of drug delivery flows
using time-dependent objectivest+constraints

(JC Math Mod Nat Phenom 2009; La Recherche 2010; Personalized Medicine 2011)



At the origin of any tissue proliferation: the cell division cycle
a controlled process by which one cell becomes two

S:=DNA synthesis, G,,G,:=Gap1,2; M:=mitosis=>
" . ¥
&

Physiological (circadian clocks, hormones)
/ therapeutic (drugs) control:
- on transitions between phases
(G,/S, GJ/M, M/G))
- on death rates inside phases
(apoptosis or necrosis)
- ontheinclusion in the cell cycle
(G, to G, recruitment)

... acontrol that is disrupted in cancer



0. Circadian clocks and clinical cancer chronotherapeutics

A system of molecular clocks

that givesa 24 h rhythmto CNS, hormones, _
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0. Circadian clocks and clinical cancer chronotherapeutics

Ircadian chronobiology (2): cancer chronotherapy

M etastatic colorectal cancer Infusion flow
(Folinic Acid, 5-FU, Oxaliplatin) Constant Chrono
T OXICITY, p
<104

Nzt 23

\ -. Lévi et al.

JINCI 1994 ;

" Lancet 1997 ;
Lancet Onc 2001

How does It Work’? Proved |mpact of circadian clocks both on cell drug

detoxmatlon enzymes and on cell division cycle determinant proteins
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0. Circadian clocks and clinical cancer chronotherapeutics

N\ y AF
,‘;‘&\ 300 mg/m?/d

Multichannel programmable ambulatory
Injector for intravenous drug infusion
(pompe Mélodie, Aguettant, Lyon, France)

Can such therapeutic schedules be improved?
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0. Circadian clocks and clinical cancer chronotherapeutics

Circadian chronobiology (4): Chronotherapy today in the clinic

* Centralised programmation

Multichann m * Any modulation of delivery rate
ultichannel s * 4 reservoirs (100-2000 mL)
for chronotherapy * 2 independent channels

* Ratesfrom 1 to 3000 mL/h

INSERM U 776 Rythmes Biologiques et Cancers



1. A ssimple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics
Simple pharmacokinetics-pharmacodynamics (PK-PD)
of a cancer drug acting on cell populations. 6 state variables

N oxaliplatin infusion flow
Healthy ceIIs(JejunaIV | Tumour cals

4 — Zﬁrq

(homeostz}siézdamped harmonic oscillator)  (tumour gthh:Gompertz model)

P e

/

K (« chrono-PD »),,//
Ec,t): F.C+/(C,»+C=).{1+cos 27 (t- g(D,t)z H.D=/(Dgy>+ D=).{1+cos 2% (t-

=59/ T} =s7)/ T}
imhalancingﬂfﬂeﬁveredﬁrug*amifturnourTﬂefﬁcachoyheal’[hyTissueToxicity—

Main work hypothesis: a5 1= ast 12 (JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)




1. A ssimple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics

Optimal control, step 1. deriving a constraint
function from the enterocyte population model

i(t)
P4 B
LR

—uC + P
—{a+ f(C,1)}Z — A+~
4 — Z(?.

Minimal toxicity constraint, for 0<t,<1(e.g. 1, =60%y):

min  A(t,1) > T4Ae, 1 € L2([t{}, t¢]), or:
telto,ty]
Fa(i) =74 — min A(t,7)/A: <0
te(to,tr]

Other possible constraints: § g[}aff | i(t) < tmaz 5
4 L st f




1. A ssimple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics

Optimal control, step 2: deriving an objective
function from the tumoral cell population model

~\P +

i(t)
Y
—vD + P

Bimaz
= aln—/72= —g(D,t)B

i
Objective function 1: Eradication strategy: minimize Gg(i), where;

Gp(i) = min B(t,1)
tElto,tr]
Objective function 2: Stabilisation strategy: minimize Gg(i), where;

or else:

Gp(i) = max B(t,i)MGg(1) = B(ts,1)

t&e [t[_]".'tfJ




1. A ssimple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics

Optimal control problem (eradication): defining a lagrangian:
L(1,0) = Gp(i) + 0F (i) , where

| Ly
J 1

then:

min Gpg(1) = min max L(z,0)
e # . J.'} g . E.
Fa(i)<0 i € L=([to. ?ff]_) 920

+ other constraints

If G; and F, were convex, then one should have:

min mmx L(7,0) = maxmin L(z,60)

7 ¢>0 6> 1

...and the minimum would be obtained at a saddle-point
of the lagrangian, reachable by an Uzawa-like algorithm



1. A ssimple PK-PD model with simple population dynamics to optimise cancer chronotherapeutics

Optimal control: results of the tumour

stabilisation strategy using this ssmple one-drug PK-PD model
‘and investigating more than Uzawa' s algorithm fixed points, by storing best profiles)

Cirug infusion flow B € 10°

10

2345678 910 133458 N EBE
Time {days)

Tumoral call pepulation A %10 Villi populatien
15

L: 234567800 NANHIE NEHPBET

012345678910 N2AA4568 7 HBET
Time {days)

Time (days)

bjective: minimising the maximum
of the tumour cell population

Constraint : preserving the jgunal mucosa
according to the patient’ s state of health

<
«

(according to a tunable parameter ~

Solution : optimal infusion flow i(t) adaptable to the patient’ s state of health

. herepreserving =~ ,=50% of

enterocytes) (C. Basdevant, JC, F. Lévi, M2AN 2005: JC Adv Drug Deliv Rev 200

)7)




2. Cdll population PDE model of proliferation

(from Lodish et al., Molecular cell biology, Nov. 2003)

One cell dividesin two: a physiologically controlled process at cell and tissue levels
in al healthy and fast renewing tissues (gut, bone marrow...) that is disrupted in
cancer



2. Cédll population PDE model of proliferation

Why model the cell division cycle?

* Need for detailed models of cell proliferation to represent the action of anticancer
drugs in cell populations with:

1) Cell cycle phase specificity
2) Different pharmacological targets on cell cycle control
3) Action with same targets on tumour cells and on healthy cells
(taking into account toxic side effects of anticancer drugs)

* Tothisaim, even independently of therapeutics, need for models with:
1) Phase and age-in-phase, possibly cyclin, structure
2) Transitions between cell division cycle phases (G,/S, G,/M)
3) Exchanges between quiescent and proliferative phases (G,/G,)
4) Targets for control of cell proliferation (physiological / by drugs)



2. Cdll population PDE model of proliferation

Frame: Age-structured PDE model for the cell division cycle

(here only linear models will be considered, but nonlinear models with feedback are possible)

Transition Transition

[

S Phazse = W Phiase

(i1 Phase 'h.
~ 10 hours

~[1.5 hours

n:=cell population density in

In each phase i, aMcKendrick linear model: " PoR _
0 0 phasei ; di.—.death rate;
—n;(t,a) + —[vi(a)n;(t, a)] + d;(t,a)ni(t,a) + K; ;1 1(t,a)n;(t,a) = O] v.:=proaression speed;
ot da K., -=transition rate
(with a factor 2for i=1)
d, K., constant or periodic
w. r. t.timet (1<i<l, 1+1=1)

v;(0)n;(t,a=0) = / K 1_;(t,a)n;_1(t,a) da

Jaz0
Kiiti(t,a) = (1) 1,>4,(a)

Death ratesd.: (“loss’), “speeds’ v. and phase transitions K. .., , are model targets

for physiological (e.g., circadian) or therapeutic (drug) control = (t)
= = (t): e.qg., clock-controlled CDK1 or intracellular output of drug infusion flow]
(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892, 2003; recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009,




2. Cdll population PDE model of proliferation

The ssimplest case: 1-phase model with division

9 it a) + i[n(t &) + [d(6) + K(t, )] n(t,a) = 0

2/ K(t,a) n(t,a) da
a>0

ot da

where K (t,a) = Kot (t)1jg+ 4 o0[(a)
and () = Lo +((2), 1—per10d1c:

(Here, v(a)=1, a* isthe cell cycleduration, and 1(< 1) isthetime
during which the 1-periodic control W is actually exerted on cell division)

Then it can be shown that the eigenvalue problem: n(t,a) = e N(t,a)

;L[N (t,a)] + A+ d(t) + K(t,a)] N(t,a) =0 / | N(t,a)da = 1
a=>0

0) =2 / K(t,a) N(t,a) da
20 has a unique positive
1-periodic eigenvector N, with a positive eigenvalue A, solution, if d(t)=d, K(t,a)=K(a)

1 —_ 1 1 - rtoc —+o00
Of LOtka S (_EUI er S) equatl on. é = / f (:‘1’._f)f::_h(tt'.:1:, where f(x) = K(x)e™ Jo KWy g 4 p.d.f. if / K(z)dxr =+
2 Jo Jo



.
General case: | phases (last = mitosis, or M phase)

According to the Krein-Rutman theorem (infinite-dimensional form of the
Perron-Frobenius theorem), there exists a nonnegative first eigenvalue A such that,
if i | I , then there exist N, bounded positive solutions to the problem:

9 Ni(t,a) + L Ny(t,a) + [di(t,a) + A+ Ki_iy1(t,a)|Ny(t,a) = 0,
/ I{i—l—ri(t; Od) Ni_l(t, CE) da, 2<i1<1
Ja>0

I
0) = 2/ K1 .1(t, @) Ni(t, o) do, wich/ N;(t,a)da =1
Ja>0

j=1va=0

p- N;(t, ae)‘ pi(t,a)da - 0 as t— ¢

(the weights ¢. >0 being solutions to the dual problem); this can be proved by
using

ageneralised entropy principle (GRE). Moreover, if the control (d, or K ,,) is
periodic, so are thé %@%ﬂ%@??ﬁe@ﬁﬁ’\?\i& @Fs&db PR HHEBATTE PRRIG: e AP 209

JC, Michel, Perthame C. R. Acad. ci. Paris Series| (Math.) 2006; Proceedings 2007 of ECMTB Dresden 2005



A: agrowth exponent governing the cell population behaviour

Proof of theexds  unigue growth exponent A, the same for al phasesi,
such thatd are bounded, and asymptotically periodic if
the control is periodic

Example of control (periodic control case): 2 phases, control on G,/M transition by

24-h-periodic CDK 1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator
[ JE‘)QJ ”:J()‘) = e M / n;(t, o)da, 1 =1,2
Ja>0

“Surfing on the
exponential growth
curve”

u . (= the same as adding
ot —= — N an artificial death term
(/=CDK1 All cellsin G1-S-G2 (phasei=1) +\ tothe di)

Entrainment of the cell division cycle by (/= CDK1 at the circadian period



2. Cdll population PDE model of proliferation

Experimental measurementsto identify transition kernels K, .,

(and simultaneously experimental evaluation of the first eigenvalue A)
In the simplest model with d=0 (one phase with division) and assuming K=K(Xx)
(instead of indicator functionqligEsEess  experimentally more realistic transitions):

T; n(t,r) + TZ n(t,r)+ K(x)n(t,z) =0,

n(t,0) =2 | | lk K(x)n(t,z)dx.

L

Whence (by integration ., T K (a)d
aong characteristic lines): R L+, x) =n(l,0)e Jo K(y)dy

Interpreted as. if Tisthe agein phase at division, or transition:

XD e
|, K(z)dr = +o00
With probability density (experimentally identifiable):
flx) = K(z)e Jo Kw)dy FEH




2. Cell population PDE model of proliferation A mathematical result:

The growth exponent A increases with desynchronisation
where desynchronisation is defined as a measure of phase overlapping at transition

roliteration, as measured by the Malthus growth exponent, or
igenvalue, increases with overlapping between cell cycle phases

.e., the less synchronised phases are, the faster is proliferation

NB: so far, this has not been extended to the periodic control case,
.e., phase transitions have been assumed to be uncontrolled)

Thisrelies on the Proposition: (Th. Ouillon’s report 2010; Billy et al. Math.
Comp. Smul. 2012): For afamily (f.) of pdfs with fixed first moment e

and varying second moment g, A increases with each &,

Proposition 1. Soit f;, 1 < i < I, une famille de fonctions de densité sur R, . Les taur de
transition associés K;_,; .1 sont ainsi donnés par (voir (2)) :

filz)  _ fi(z)

Kisiyi(z) = f:m fi(z')dz' 11— fﬂr fi(z")dz'

En supposant d; =0 (1 <i < 1I), la premiére valeur propre du systéme (1) A > 0 est donnée

par (voir [1]) : !
1 R
3= ilzllfﬁ fi(z)e™dx

Pour1<i<1I, on pose e; = fﬂ_'_m zfi(z)dz etlo? = Jm 2 fi(x)dx — €| et on suppose que

les e; > 0 sont constants. Soit j € {1,...,1}. On suppose que leso; (1 <1 # 7 < I) sont constants.

. o
Alors | X est croissante avec o5




2. Cédll population PDE model of proliferation

A working hypothesis that could explain differencesin
responses to drug treatments between healthy and cancer tissues

Healthy tissues, i.e., cell populations, would be well synchronised

w. r. to proliferation rhythms and w. r. to circadian clocks, whereas...
...tumour cell populations would be desynchronised w. r. to both, and
such

proliferation desynchronisation would be a consequence of an escape
by tumour cells from central circadian clock control messages, just as

 Question:
Is cell cycle phase
desynchronisation
another hallmark
of cancer in cell
populations?

Hanahan & Weinberg, Cell 2000 mmm= Hanahan & Weinberg, Cell 2011



3. Modd identification

Experimental 1dentification of the basic model parameters
with FUCCI reporters on a 2-phase model G, / S-G,-M

(so far, without circadian control)

Cells:
NIH 3T3 of a common population

(mouse embryonic fibroblasts)

without preliminary synchronization

Measures: for each individual cell:
red and green fluorescence time recording

every 15 min

from Sakaue-S5awanc et al.

approx. 150 measures for each cell Cell 2008, 132, 487-498




3. Model identification

FUCCI: amovie (Sakaue-Sawano, 2008) on HeLacells




3. Model identification

Another FUCCI movieon NIH3T3 cdlls
(C. Fellet, F. Delaunay, IBDC Nice, 2012)




3. Modd identification

FUCCI reporters + individual cell tracking (non trivial...):
Measuring time intervals: G, and total division cycle durations

Bl . BO
time ( / 15 min)

Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed by Fréderique Billy at INRIA



3. Modd identification

Phase transitions w.r.t. age x

Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells

10 * 20

® data » ® ocala
—_— fit
3 | fit 18
] 16k
T 14
£ 6 2 1z
- =
L o |
= =
§ 5 = 10
2]
g 3
gz 4 Z B
3 6
2 4
1 2
o L —_—.
0 s 10 15 o0 gt Py A pr pr 50 uﬂ -; = " - & -2% ---;;--Q;E-wu13.;1.14%11114.;:.—@

duraticn of G1 () duration of SG2K (h}

FUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid mediu



3. Modd identification

Computing the growth exponent, fitting datato p.d.f.s.
Gamma p.d.f.s were best fits and yielded simple computations:

J o —1 poi —Bi(x—

-~ i) 1 i1 ¢ :
Yi B e T hysi4oo[(T) 1 = 1,2, where

2-phase Lotka' s equation simply reads:

... which yields here A = 0.039 h?

(and yields mean doubling time T,=17.77 h, with mean cell cycle time T_=17.95 h)



3. Modd identification

G, t0S

7 Onexcomplete observed cell cycle —

o o o <
&) ~

% of cells in G1 and SG2M

(cell syhchronisation “by hand”)

Phase transitions w.r.t. age x
Transition rates K(x) from pdfs f(X) on NIH 3T3 healthy cells
and resulting population evolution

Recalling that in the model
f = p.d.f. of phase duration time
and K = phase transition kernel:

_ fz(’f)
1— [ fi(§)d¢

I{i—yi—kl (T )

SIG,/M to G,

—_—G1
SG2M

08

o}
908
°

:SWAAAAmmﬂﬁm—-—

2 \ M
a

3 04

3

03

02 M

0.1

| Exponentia growth of theoretical tota |
.| Céell population: here, A=0.039 h!

total density af calls
w & o

. Asynchronous theoretical cell growth

time {h)

250




Human physiology: circadian rhythms
In the Human cell division cycle

Example of circadian rhythm in normal (=homeostatic) Human oral mucosa for
Cyclin E (control of G,/S transition) and Cyclin B (control of G,/M transition)

S

S S

€ 175 x » 160

& : . 8, ] I

? 1501 / 9 1407 T

= 125] - g 120°

%00 L By l

a 10 T [ = 1007 1 B

i NG N R /l I

£ 75 1\ [ 5 80] I |

S - L 3 en- l

& 50’ Tl 607 |
08 12 16 20 00 04 08 12 16 20 00 04
Sampling Time (Clock Hour) Sampling Time (Clock Hour)

Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean + S.E.M. in oral mucosa

samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.
(from Bjarnason et al. Am J Pathol 1999)



3. Mode! identification (a priori knowledge) AN el0 glal=eif0laN0l=1 o= aRe=1 Cycle and
circadian clocks: cdki opens G2/M gate; Weel inhibits Cdk1; Per2 inhibits Wes

Cell cycle clock

Circadian clock

o —

Gy -— M !L \]

l T-l— CDCG2 -l—"‘I II\—)-HE‘-.-‘-EHE.U.
Cyclin B

s e, W\
M oz ) M\

FER12
| ﬁ (Matsuo commented by Schibler,Science, Oct. 2003)

AMEN with LD12-12 entrainment on wee1 [W=V2(1-force.jet-lag)], vd=2, v3=2, vM5=17.1, force=0.5
1.0
; 0.8
Xox25 S= o
K

MM

)e./%\x el TRl

J ———— X=protease (enhancing cyc B degradation}

W (/4 V4 Mitotic oscillator model by Albert Goldbeter, 1997, here with
circadian entrainment by a square wave standing for Weel

YW\OYK Extendeabcade modieé ahi

I «



3. Modd identification (a priori knowledge)
More connections between the cell cycle and circadian clocks
Sl bk 1) The circadian clock gene Bmall
might be a synchroniser in each cell
between G,/S and G,/M transitions

(Weel and p21 act in antiphase)

2) Protein p53, the major sensor
of DNA damage (“guardian of the
genome”) , is expressed
according to a 24 h rhythm (not
altered in Bmal1’- mice)

W“ Gemamic Gemamic Instatility,
INstacAy Call profifaraticon

Rav-Erba '

C m athan 1|:|r1~.

(fromFu & Lee, Nature 2003




ek Sl /\ dding circadian control on transitions

. Circadian control on phase transitions. two cosines for ¢, and

zwz

| a L
20 a5 a L ] 16 20

r(t) = cos?(2m(t—3)/12) Lgug (£) e, Walt) = cos®(2m(t—3)/12) 1 (t)+e

(a 12 h-delay between the two cosines was determined as the one that maximised the A)
Resulting evolution of the clock-controlled cell population: A=0.024 h*(<0.0039 h?)

pﬂﬂﬂﬂhﬂ

Here we put A=0024

K(x,t) = k(X).{(1)
with k = FUCCI-identified [
and = acosine :

[cosine: in the absence of a
better identified clock thus far]




3. Model identification, with artificial
gating vvichout time control

Phases. asynchronous cell growth

— ]

SG2M

—y

g

Global: sheer exponential cell growth
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[ Agreement between
model and dataon .
the first divisionf— ;-

A=0.039h"1 Ty =18h

F. Billy



3. Modd identification, with artificial
gating

e vrieer v woatrol (1)

KJ’—>1'+1 (a, t) — Ki—i+1 (a)

N’
from exp. data

Seep synchronisation within the cell cycle

L‘, ( t) i I|I I|I
N - 04t I'I |||
circ. clock —— [
(1) healthy cell
population % 5 0w » 2

(=sharp gating by
circadian clock)

Sepwise cell population growth

os8f P ﬂ F ﬂ F ﬂ i P_gé 80l r__
i
g' i 120
%M- gmu—
JUUUUUUUUUL: of

A =0.024h"1 Ta =29.4h

F.Bi



3. Moddl identification, with artificial

atin I —=|
g g VVILII LI \.-UlltrOI (2)
II - ] II- “‘-\\\
Kj'_; i+1 (a, t) == Ki—s i+1 (a) X L',(t) II.'
\—'ﬂ \V/ II|I
from exp. data  circ. clock ——
(2) cancer cell
population \ :
(=lazy gating by
circadian clock)

Soft synchronisation within the cell cycle Sepwise cell population growth

il W ﬁWH :
EL LU s

A= 0.026h"1 T4 = 26.3h
F. Billy



3. Model identification, with artificial

g Summary
20 = “a\\‘_ j 20 F
$ $ 4
A =0.024h1 A = 0.026h1 \ = 0.039h1
Ta =29.4h Ta =26.3h Tq =18h

F. Billy



4. Drug delivery optimisation: control of eigenvalues

Circadian + pharmacological control on transitions
K(xt) = k(X).yA(t).[]1-g(t)]: k FUCCI-identified, ¢ clock, g optimal drug effect

green and red: ¢

blue: [1-g].¢
(g blocks )

.tiII‘IE {h)

Figure 9: Modelled circadian control for transition G to S/ G2 /M (dashdotted line) and transition
S/G5 /M to G;. The natural control for S/G5 /M to (7, transition is in solid line, the drug induced

control is in dashed line.

10 15
time (k)

Figure 10: Modelled answer of cancerous cells to circadian control for transition G, to S/G4 /M
(dash-dotted line) and transition S/G5 /M to G,. The answer to natural control for S/G5/M to
(' transition is in solid line, the drug-induced control is in dashed line.




4. Drug delivery optimisation: control of eigenvalues

Theoretical chronotherapeutic optimisation
of a 1st eigenvalue (cancer growth) under the constraint
of preserving another 1st eigenvalue (healthy tissue growth)

(i.e., what if now we add a drug control, setting K(x,t) = k(X).yAt).[ 1-g(t)] ?)

- McKendrick’s model of cell population proliferation

- Control of proliferation by blocking K. ;. ; using theoretic periodic drug delivery:

K(tx)=[1-g(t)].1y(t).x(x) where: g(t) is a periodic external control (chronotherapy)
Y(t) is a circadian clock control on the cell cycle

K(x) is an [only] age-dependent transition rate

- Objective function to be minimised: A, 1st eigenvalue of cancer cell population

- Constraint function to be preserved: A, [=A], 1st eigenvalue of healthy cell population
- Design of an augmented Lagrangian by combining A, and A,-A (with penalty)

- Arrow-Hurwitz (or Uzawa) algorithm to track saddle points of the Lagrangian

- ...thus obtaining only suboptimality (necessary to obtain critical points) conditions



4. Drug delivery optimisation: control of eigenvalues

Evolution of the two popul ations: cancer

2500

blue), healthy (green

Circadian control,
no drug infusion

time [days)

Figure 11: Evolution of the population of cancer (blue, beneath) and healthy (green. above) cells
without drug infusion during 12 days. ‘We can see that the populations have different exponential
growth raie - 0,026 and Apeareny 0.024). In the beginning, there wem as manmy
cancer cells as healthy cells, in the end they represent a much langer part of the total population.

Circadian control,
added drug infusion

population

time (days)

Figure 12: Evolution of the population of cancer (hlue, beneath) and healthy (green, above) cells

with the -jrugirl'ﬂ.;.inn. starting at time 0, given by the a.lg_nrimm. Healthy cells keep multiplying (F Bl | |y at a] ) 2011, Sme| tted)

(A peaeny = 0.0 while the cancer cell population is weakened (A gneee = 0.019),




4. Drug delivery optimisation: control of eigenvalues

Numerical solution to the optimal infusion problem

(Uzawa) and effect on eigenvalues, healthy and cancer

Infusion scheme g(t) In favour of this approach:
- characterises long-term
trends with one number,
- easily accessible
| target for control
—t _ fits to physiologically
o structured growth models

=2
moom M|
[ ET R I KU S B U S B

Injection
[=] L=l [=]

=]
s =

=
a

o

=
=

Figure 11: Locally optimal drug injection strategy found by the optimisation algorithm.

Target eigenvalues:
Cancer (blue) o]
Healthy (green) > ¥ |ts drawbacks:

- deals with asymptotics,
not with transients

- assumes a linear mode
2 for proliferation

Figure 12: Daily mean growth rates for cancerous (solid line) and healthy cells (dashed line) when - aSSUMESs perl Odl C ContrOI
starting drug injections at time 0. Aftera 10 day transitional phase, the biological system stabilises by drugs (but the perl Od

towards the expected asymptotic growth rate L.
can be infinitely long)
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4. Drug delivery optimisation: control of eigenvalues

What remains to be done to complete the design of this model:

- |dentify actual doubling times and compare them with calculated T,=In2/ A

= Replace cosines by identified circadian gating functions

- Identify transition p.d.f.sin a broad variety of cell populations, healthy and cancer

- Assess actual (de)synchronisation in cancer vs. healthy proliferating cell populations
- Relate it with the variance of cell cycle phase duration p.d.f.s (i.e., transition kernels)

- Extend from cell culturesin liquid mediato solid tissues (using nonlinear modelling)



5. Molecular PK-PD modelling

Plasma and cell pharmacokinetics (PK) of 5-fluorouracil
(5-FU)

* Poor binding to plasma proteins

* Degradation +++ (80%) by liver DPD

* Cedll uptake using a saturable transporter

* Rapid diffusion in fast renewing tissues

* 5-FU = prodrug; main active anabolite = Fd-UMP

* Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8
(Oguri, Mol Canc Therap 2007)



5-FU catabolism: DPD

(dihydropyrimidine dehydrogenase)

e 5-FU "= 5.-FU H,, hydrolysable[ — FBAlanin]
* DPD: hepatic +++

* DPD: limiting enzyme of 5FU catabolism

* Michaelian kinetics

e Circadian rnythm of activity

* Genetic polymorphism +++ (very variable toxicity)



5. Molecular PK-PD modelling

5FU and LV: plasma and intracellular PK

FAUMP extracellular efflux 5FU cell uptake SFU DPD detoxicationin liver

(by ABC Transporter ABCC11)

i(t) = 5FU Binding of
infusion flow ’ FAUMPto TS
to form areversible

binary complex B

Binding of LV to

j(t) =LV
FAUMP-TS=B to

infusion flow
form a stable

ternary complex




Resistance? Induction of ABC Transporter activity by

FAUM P-triggered synthesis of nuclear factor Nrf2

Nuclear factor

(e.g., nrf2)

ABC Transporter
(ABCC11=MRPS8)

) 0

A=ABC transportes MRP8 ~

/ !
|’I — -;I

=5



5. Molecular PK-PD modelling

Targeting Thimidylate Synthase (TS) by FAUMP:

Formation of binary and ternar TScomIexes

—A’1FS + k_lB + QTS(SO — S) ' *
|FJJM:")
ki FS — k1B — k4BL v e

T -.

J_|_;‘_‘w-
kaBL — vpT Eoii®
F + S<;—_> F-S= B (FAUMP-TS 2-complex)

B+ L —— B-L = T (FAUMP-TS-LV 3-complex)

B=binary
complex

1
T=ternary | |
complex o1z



5. Molecular PK-PD modelling

Modelling PK-PD of 5FU [with drug resistance] + Leucovorin
(action exerted on thymidylate synthase only in the S-G, phase)

dt G vV | .
(4 f”p Jiv'Q [ i 1 L
dt ¢ S | |
dN kF™ _ N
= A d
TR U T
() dA ! ,I-’*"‘r 5 “A 2 \ = ABC transporter (active drue effix) ‘ .A
dt .
g 8 . ;
= —kFS+k_1B +6rg :
7 | FR_1D+brgl - _
(8) 1B = . ,
L kS — k1B — kyBL [~ FreeTomivia S 15|
IH i
iy ”‘ i D onteet T = Blocked Thymidylate Synihas -
D Z m KBL=ypTe~] DeMmT=Eals Tt AN
”]JI (i I =i rir-1 [ ie

P= Plasma [5-FU]; F= Intracellular [FAUMP];
2n(t - vppp) 0= Plasma [LV]; L=Intracellular [MTHF];
where Ippp =lppp_pase { 1+ecos 5 } N = 3-FU-triggered Nuclear Factor; A= ABC
g Transporter activity, NuclearFactor-induced;

(F. Léewvi, A. Okyar, S Dulong, JC, Annu Rev Pharm Toxicol 2010)




5. Molecular PK-PD modelling

dR

d
d
d
d

dt
K
dt
C
dt
F
dt
G
dt

(
\

= —Vosr

— = —Vgsr

Modelling PK-PD of oxaliplatin
(cytotoxic action exerted on DNA in all phases except M phase)

—1¢ +cl+M{]R+i@

Input i =oxaliplatin infusion

—ARK + 1k (Ko — K)

CG?

— kpnaCF &R
K& + G2

—kpnaCF + U )

CG*
K +G

> + Uc(Go—G)

Plasma proteins

Py

]

SN NN NN P A T
AV AW . . e
il oxallplatlnMM
EDlﬂ " ) ' ' EEIID ) ' ' II]IDD
plasma oxaliplatin
plasma proteins

& nfusien”

. Decay of free DNA

g VATAVAVATAVATAVAVAVATA

g

Y |

[ oxaipttin |||

il

) = Tnfusien

(JC, O. Fercoq, submitted as Soringer book chapter, 2013)




5. PK-PD modelling and connection with cell population dynamics

Connecting molecular PK-PD with cell population dynamics:
Introduction of PK-PD effects on death rates with repair

° %rzl[r,x}—k% nl[r..r]+{K| (I..r)+L1(I]+d1}n1(r..r] —&r(t,x)=0,

J
Et’l (t,x)+ {dk‘fl + & }t’] (t,x)—Li(t)m(t,x) =0,

n(t.x=0)=2n3(xp.1) ,n1(0,x) = vi(x) .r(0.x) =pr(x) .

with L{(t) = C] and K (r,x) = k1 (x)y(t,x) |
d

d
(r.x)+ = m(t —1—{1{2 1,x)+ L)1) +(fg} ny(t,x) —&ra(t,x) =0 .

Eﬂz dx

J
a—rg t.x —l—{d K12 —1—89}1'9 t.x —Lg(!]ng(f.x] =0 ,

ny(t f Ki(t.&)n (E.1) dE .ny(0,x) = va(x) .r2(0,x) = pa(x)

F(r So—S

with Ly (1) = C@ +C@ and K» (t,x) = k2 (x)ya(t) |
FO Sfo

d

. > HS(LX)—'_? rzg(r,x)—|—M.ll[\.M_+m[[_x) n3y(t.x) =0,

ni(t,x=10) = K (t.E)na(t,&) dE, .n3(0,x) = v3(x) .
£>0

(JC, O. Fercoqg, submitted as Soringer book chapter, 2013)
+PK-PD added models: cytotoxic (death rates) effects




5. PK-PD modelling and connection with cell population dynamics

Solution to the chronotherapeutic combined drug delivery optimisation problem

Here, only 500
cytotoxic 450
drugsacting = ,q,

on death ratesy: _
£ 350 L eucovorin

300+
2504

200- . . Oxaliplatin

=
£
W
c
o
Iz
S
L=
£
o
S
| .
(]

f
/

& 8 10 12 14 16
time (h)

Fig. 6 Locally optimal infusion strategy with a combination of leucovorin (dash-dotted line), 5-
FU (dotted line) and oxaliplatin (solid line). These infusions are repeated every day in order to
minimise the growth rate of the cancer cell population while maintaining the growth rate of the
healthy cell population above the toxicity threshold of 0.021.

(JC, O. Fercoq, submitted as Soringer book chapter, 2013)




5. PK-PD modelling and connection with cell population dynamics

Effects of this optimised periodic drug delivery regimen on growth rates

Target eigenvalues.
Cancer (blue)
Healthy (green)

L
T
—
Lt
—
og
|-
=
A
=
o
|-
o
=
Las]
@
=
‘g
o

time (days)

Fig. 11 Daily mean growth rates for cancer (solid line) and healthy cells (dashed line) when start-
ing drug infusions at time 0. After a 10-day transitional phase, the biological system stabilises
towards the expected asymptotic growth rate.

(JC, O. Fercoqg, submitted as Soringer book chapter, 2013)




5. PK-PD modelling and connection with cell population dynamics

Evolution of the two cell populations, without, then with cytotoxic drugs

(Here, drugs act on death rates and not on transition rates )

population
population

0
o 1 2 3 4 5

5 & 7 8 9 10 11 12
time (days)

0
0 1 2 3 4 5 9 10 11 12

time (days)
Fig. 8 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells

with the drug infusion, starting at time 0, given by the algorithm. Healthy cells keep multiply-
ing (Aheat:ny = 0.021) while the cancer cell population is weakened (Acancer = 0.0229).

Fig. 7 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells with-
out drug infusion during 12 1 see that the populations have different exponential growth
rates (Acancer weatehy = 0.0234). Cancer cells proliferate faster than healthy cells.

A result not as good as in the previous case, when drugs were applied on
transition rates... hence the suggestion of a cytotoxic+cytostatic treatment
(e.g., SFU+oxaliplatin+cetuximab): a story to be continued

(JC, O. Fercoq, submitted as Soringer book chapter, 2013)



5. PK-PD modelling and connection with cell population dynamics

Modelling effects of cytostatics (CDKIs, TKIs, ...) maintained
on cell cycle phase transition rates [and boundary conditions]

ransition [
. hase
~0.5 hours

0 0 ) PN
,(—uz(f‘u) + ‘(—[1'1((1")11[”4(1)] +d;i(t,a)ni(t,a) + Kiip1(t,a)ni(t,a) =0
Ot 7 Oa ’ Y o

v;(0)n;(t,a=0) = / K yi(t,a) ni—1(t, «) do

Ja>0

Ki_it1(t,a) = (t)1,>4,(a)

Control on inputs from G, phase may be represented by a multiplicative factor in the
first (G,) boundary condition (which is the same as modifying the first transition rate);
for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):

E); n X *.-l__. ax”-l

New ‘death’ term
(=desath + escape

(7,x) +U = /) K12, 001 (2,x) +{fK12(2,x) +d1 (xDpn (7,

m(tx=0)=1~f) [  Kisa(t,&) mi(r,§) dE
f: target of o e
cytostatic drug, - 210 = 2000,

towards G,)

(experimentally { <o) = f ] S Ki-2(6:8) m(6,6) dE —vO(r) . (not done thus far,

sendi ng cellSto with the adjunction of a quiescent phase Gg represented by
guiescence

1 B .-, .
;)f({)") — 0o waitinng for PK-PD

of cytostatics...)

measurable)

which is thus fed only by cells escaping from G instead of processing into S phase.



6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance

Tackling another main issue in cancer pharmacotherapeutics:

Emergence of drug resistance in cancer cell populations
(another model of cell population dynamics, with thus far no PK-PD)

Instead of controlling drug resistance at the individual cell level (ABC transporters),
representing the possible emergence of resistant cell clones due to mutations
occurring at mitosesin a cell Darwinism perspective.

Assumption: Cancer cell populations, under the pressure of a drug-enriched
environment, may develop (costly) mutations yielding resistant cell clones,
less fit in a drug-free environment, but better survivorsin a hostile environment.

A therapeutic objective, under these circumstances, may be not to eradicate all
cancer cells (in fact only all drug-sensitive cells), but instead to let some of them
live so asto limit the growth of an emergent resistant cell clone (‘ adaptive therapy’).



6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance

A soaring theme on the international scene; Evolution and cancer

& _Ia)
' > 9 &
Carlo Maley Robert Gatenby, MD*

1S Teser Ve,

First international
Evolution and cancer conference
SF, June 3-5, 2011, next onein

* RG advocates ‘ adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 200C¢



6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance
Gatenby’ s new paradigm: rational management of cancer burden by ‘adaptive therapy’

OPINION HATURE Vol 45928 May 2009

A change of strategy in the war on cancer

Patients and politicians anxiously await and increasingly demand a ‘cure’ for cancer. But trying to centrol the
disease may prove a better plan than striving to cure it, says Robert A. Gatenby.

See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011



6. A further challenge for therapeutic optimisation in oncology: dealing with drug resistance

A first model with ‘resistance phenotype expression’ structur

X (0 £ x <+00): aresistance phenotype level (e.g., activity of an ABC transporter)

The growth dynamics of healthy and tumor cells with a chemotherapy 1s given by the system

growth with homeostasis
natural apoptosis  effect of drug

s, . 1 -0y . —~~~ — e, .
—nyg(x,t) = r(x) — d(x) —e(t)pg(x) |ng(x,t)
o ™" | (1 ;p(f})'ﬂ T (1)
+{1+ H{ﬂ}ﬁ /r(y)ﬂfau{yeI}-nﬂ{yef)dy-.
p N -’

>
birth with mutation

2nelet) = [(1-00) r(x) — d(x) — eldyuc(x)|nc(r, 1
2)
+oc. [ 7o) Mo (v, Imc(y, D
and the total population is defined as
p0) =pu(®+pc(®),  pu®)= [ nu(etds. po®) = [ nola.t)iz. 3)
=0 S 2=0

(A model that is still not able to yield gene polymorphism in cancer cells)

A. Lorzet al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274



6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

Probability distribution functionsin cell populations

for the resistant phenotype under the pressure of a drug

1. No resistance (healthy cells, or sensitive tumour cells)

60

osf Level curvesfor n,(x,t) 1 Asymptotic distribution for n,(X)

50 [ \
0.8

|
0.7 . [

A. Lorzet al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274




6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

Probability distribution functionsin cell populations
for the resistant phenotype under the pressure of a drug

2. Resistance (in a drug-resistant tumour cell clone)

x 10%

18
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08

07

06 -

04

03

02F

01F

Level curvesfor n.(xt)

1 1 1
t 15 20 25

A. Lorz et al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274

16

14

121

0

| Asyrlnptotlic distribution for nlc(x) In:
|

0

I
01

I
0.2

1
03

1
04

X

1
06

1
07




6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

2nd point of view : two different drugs, cytotoxic and cytostatic, two resistance
traits x and y,' no mutations, exchanges with the environment instead’

growth with cytostatic therapies and death effect of cytotoxic therapies

~

L N

%NH(IL.I. y) = [rg(z,y;ep) —dg(z,y)lg(t)|ng(t,z,y) — 71H(I. y;cx )ng(t,z,y)

growth with cytostatic therapies and death effect of cytotoxic therapies

’r

%nc(t.z‘.y): [re(z,y;cp) —de(z,y)lc(t)|ne(t.z,y) —  ho(z,y;ex)ne(t, z,y)

environment evolution effect of cells on the environment
d /—/\ - % ~\
gl (t) + TIg(t) = Tlancpc(t) + annrpH(t)]

environment evolution effect of cells on the environment
AN

f-/\ - ~\
TIc(t) = 7 laccpc(t) + acupu(t)]

1 1 1 1
pH(t) = / / ny(t,z,y)dzdy, po(t) = / / ne(t, z,y)dxdy.
0 JO 0 JO

With particular reference to nc(t, z, v), simulations have been developed assuming the follow-

where:

ing definitions to hold

(1 —acep) 2 2 2 4_4
ro(xz,y; e =41+ 2 - — 4+ (1 —x2)y" "+ (1 —y)°xz® —ep(l —x s
o yice) =4 |14+ 2:0 59T 4 (L= 292 + (1 )a? = ep(1 = 2)'yt

1 A .
do(z,y) == ) Y(z,y), he(z,y; ek ) == ex (1 — y)'z?,

under distinct scenarios defined by different values of parameters c¢i, ¢p and ac. In particular,
we considered cxk = cp=0and ac =1or cxg =2, cp = % and ac = 2.




6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

Monomorphism in the healthy cell population

No mutations: non-resistant (‘ healthy’) cells. starting from a common medium phenotype
(cytotoxic res.=.5, cytostatic res.= .5), evolution towards the non-resistant (0,0) phenotype

1 20 1 4000

n2(t,x,y) at t=0 nz(t,x,y) at t=70

15 3000
10 . 2000

5 1000

0 0

nz(t,x,y) at t=100 n,(t,x,y) at t=200

Model, simulations and figures by Tommaso Lorenz



6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

Dimorphism in the cancer cell population

No mutations. Resistant (‘cancer’) cells: starting from the same common medium phenotype

A e e S R B L, 0 I g I i T S e e P S e S R e e T A I o \ W NN By 4 e W Y

1 n,(tx,y) at t=0 [ *° 1 n,(tx,y) at t=70

™~

nz(t,x,y) at t=75 n,(tx,y) at t=100

15

Model, ssmulations and figures by Tommaso Lorenz




6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance

Mutations again, cytotoxic and cytostatic drugs,
with a 1d drug resistance trait x for both drugs

O
1+ ages (t)

Rp (IH (f) Cl(t), CQ(t)J ;I,‘)'}E.H(;If, t) + f IH(y)J[(y *I:)'}I'H(t: y)dy

Oc
Re(Ic(t), ci(t), co(t), x)ne(x,t) + < f‘i"c(y}ﬂﬂy: z)nc(t,y)dy,
1 4+ acea(t)

with

rg(z)(1—6p)
1+ agea(t)

re(z)(1 —0nm)
1 + acea(t)

Ry (Ig(t),c1(t),ca(t).x) =

dp () 5 (t) — (@) (1),

Re(Ic(t),c1(t), co(t), @) =

—de(z)Ic(t) — po(x)er(t).

(Alexander Lorz and Tommaso Lorenz)




6. A further challenge for therapeutic optimisation in oncology: dealing with drug
resistance
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Figure 6: (Cytotoc and cytostatic drugs) Dynamics of ng(z, ) for ¢ = ¢ = 0 {topleft), ot = W Figure 6.7 (C}'totoxicr and cytostatic drugs) Dynamics of ﬁmlj-.;} for gy = 0 = 0 (tgphleft), o =
= 1 {top-right), ¢y = ¢y = 13 (bottom-left) and ¢; = ¢y =2 (bottom-right). As long as parameters @ o) 1 (top-right), ¢ =y = 15 (bottom-Jet) and ¢; = ¢; = 2 (bottom-right). As long as parameters
¢1 and ¢y increase, the maximum value of ng(t = 2000, 7) becomes smaller so that, under the choice W and ¢, increase. the maximum value of ny (t= 3000, ) hecomes smaller but about one half of the

¢ =y =1, function ni(z, ) tends to sero across time. healthy cells 15 still alive at the end of computations,

A. Lorzet al. M2AN 2013, preprint http://hal.archives-ouvertes.fr/hal-00714274
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