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Lag (months) Correlation p-value

N12 -6 0.17 0.001

N3 -6 0.17 0.001

N4 -6 0.16 0.002

N34 -6 0.19 0.0002
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Cazelles, B., Chavez, M., McMichael, A. 
J., & Hales, S. (2005). Nonstationary 
influence of El Nino on the synchronous 
dengue epidemics in Thailand. PLoS 
medicine, 2(4), e106.

“(...) significant association between El Niño, 
climate variables, and DHF incidence for 
Bangkok and for the rest of Thailand.’

“Dengue in Bangkok seems to precede the 
oscillations of the Nino 3 index.”

“These findings do not exclude an 
important role for other factors, such as 
intrinsic disease dynamics, in explaining 
patterns of dengue incidence in Thailand.”
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2.  A mechanistic modeling approach
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�t = �0 ⇤ (1 + e ⇤ cos(!(t+ �)) + �̃t)

Aguiar, M., Ballesteros, S., Kooi, B. W., & Stollenwerk, N. (2011). The role of 
seasonality and import in a minimalistic multi-strain dengue model capturing 
differences between primary and secondary infections: complex dynamics and its 
implications for data analysis. Journal of Theoretical Biology, 289, 181-196.
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Capturing unknown variations of a key parameter

HIV transmission rate among the Parisian 
gay community 

Cazelles, B., & Chau, N. P. (1997). Using the Kalman filter and 
dynamic models to assess the changing HIV/AIDS epidemic. 
Mathematical biosciences, 140(2), 131-154.

�t = �dBt
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Capturing unknown variations of a key parameter

d log(�t) = �dBt
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Simulated incidence observations
Simulated unobserved path of �t

95% credible interval
50% credible interval

Capturing unknown variations of a key parameter
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Simulated incidence observations
Simulated unobserved path of �t

95% credible interval
50% credible interval

Generic framework:

Exact exploration of

Robust algorithm when � ! 0

Dureau, J., Kalogeropoulos, K., & Baguelin, 
M. (2012). Capturing the time-varying 
drivers of an epidemic using stochastic 
dynamical systems. arXiv preprint arXiv:
1203.5950.

dh(�t) = µ(�t, ✓)dt+ �(�t, ✓)dBt

p�(�t|✓⇤, y1:n)
p�(�t|y1:n)or

Capturing unknown variations of a key parameter
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�t = �0 ⇤ (1 + e ⇤ cos(!(t+ �)) + �̃t)

Aguiar, M., Ballesteros, S., Kooi, B. W., & Stollenwerk, N. (2011). The role of 
seasonality and import in a minimalistic multi-strain dengue model capturing 
differences between primary and secondary infections: complex dynamics and its 
implications for data analysis. Journal of Theoretical Biology, 289, 181-196.

d logit[�0.3;0.3](�̃t) = �dBt
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3.  Computationally intensive inference
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Iterated Filtering
a simplified view

Ionides, E. L., Bretó, C., & King, A. A. 
(2006). Inference for nonlinear dynamical 
systems. Proceedings of the National Academy 
of Sciences,103(49), 18438-18443.

p(y1:n|✓)

✓
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Iterated Filtering
a simplified view

Ionides, E. L., Bretó, C., & King, A. A. 
(2006). Inference for nonlinear dynamical 
systems. Proceedings of the National Academy 
of Sciences,103(49), 18438-18443.

p(y1:n|✓)

✓here, dim(  )=19
✓
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Ionides, E. L., Bretó, C., & King, A. A. 
(2006). Inference for nonlinear dynamical 
systems. Proceedings of the National Academy 
of Sciences,103(49), 18438-18443.

p(y1:n|x0:n, ✓)

Key idea:
the model defines

Iterated Filtering
a simplified view
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Iterated Filtering
a simplified view
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Iterated Filtering
a simplified view

p̂(y1:n|✓) =
X

i

p(y1:n|xi
0:n, ✓)p(x
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p̂(y1:n|✓2)
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p̂(y1:n|✓3)
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p̂(y1:n|✓4)
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Ionides, E. L., Bretó, C., & King, A. A. 
(2006). Inference for nonlinear dynamical 
systems. Proceedings of the National Academy 
of Sciences,103(49), 18438-18443.

Challenging, and specially 
in high dimension

Iterated Filtering
a simplified view
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Relying on the Extended 
Kalman Filter

- Requires an SDE formulation / 
approximation of the model
- Relies on a Gaussian approximation 
of                 and 

p(y1:n|✓)

pEKF (y1:n|✓)

p(xt|y1:n, ✓) p(y1:n|xt, ✓)
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Relying on the Extended 
Kalman Filter

p(y1:n|✓)

pEKF (y1:n|✓)

m0:n, C0:n

pEKF (y1:n|✓1)

About 100 times faster
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p(y1:n|✓)

pEKF (y1:n|✓)

pEKF (y1:n|✓2)

Relying on the Extended 
Kalman Filter

m0:n, C0:n
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p(y1:n|✓)

pEKF (y1:n|✓)

pEKF (y1:n|✓3)

Relying on the Extended 
Kalman Filter

m0:n, C0:n
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p(y1:n|✓)

pEKF (y1:n|✓)

pEKF (y1:n|✓4)

Relying on the Extended 
Kalman Filter

m0:n, C0:n
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Relying on the Extended 
Kalman Filter

Iterated filtering

Combining quick approximate methods to “exact” 
inference algorithms
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Developped by S. Ballesteros, T. Bogich and J. Dureau
with the support of B. Grenfell and B. Cazelles

Plug-and-play versions of
MIF, pMCMC, ksimplex, kMCMC

available soon on www.plom.io
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4.  Results
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�t = �0 ⇤ (1 + e ⇤ cos(!(t+ �)) + �̃t)

d logit[�0.3;0.3](�̃t) = �dBt
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Lag (months) Correlation p-value

N12 -9 (-6) 0.28 (0.17) 1e-8 (0.001)

N3 -9 (-6) 0.24 (0.17) 1e-6 (0.001)

N4 -9 (-6) 0.13 (0.16) 0.01 (0.002)

N34 -9 (-6) 0.21 (0.19) 1e-5 (0.0002)

Chiang Mai

Thursday, February 14, 13



5. Conclusions
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Take-home message:
This approach may allow to disentangle the role of 
extrinsic and intrinsic determinants. 
It is a work in progress.

Thursday, February 14, 13



Further work:
- Further exploration of likelihood function
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Further work:
- Further exploration of likelihood function
- Critical analysis of fit and model
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Further work:
- Further exploration of likelihood function
- Critical analysis of fit and model
- Other districts (in particular rural/urban) 
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Further work:
- Further exploration of likelihood function
- Critical analysis of fit and model
- Other districts (in particular rural/urban) 
- Confront to climate data from Thailand
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Questions:
- Should we also explore non-chaotic states?
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Questions:
- Should we also explore non-chaotic states?
- Can we build an explicit coupling of climate and   
dengue through the transmission rate?
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Questions:
- Should we also explore non-chaotic states?
- Can we build an explicit coupling of climate and   
dengue through the transmission rate?
- Can the predictibility horizon be extended?
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Thanks!
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