On a Exponential Decay of the Solution for a Stochastic Coupled System of Reaction-Diff usion of Nonlocal Type

Jorge Ferreira

Federal Rural University of Pernambuco - UFRPE/Brazil

CMAF - UNIVERSITY OF LISBON

Introduction

- Notation formulation of the problem
- Existence and uniqueness of solution
- Asymptotic behavior

In this talk I study the following initial-boundary value problem involving a stochastic nonlinear parabolic equation of nonlocal type

$$\begin{cases} u_t - a(\int_D u \, dx) \Delta u = g_1(v) + f_1(u, v) \frac{\partial W_1}{\partial t} \text{ on } D \times]0, \infty[,\\ v_t - a(\int_D v \, dx) \Delta v = g_2(u) + f_2(u, v) \frac{\partial W_2}{\partial t} \text{ on } D \times]0, \infty[,\\ (u(x, 0), v(x, 0)) = (u_0(x), v_0(x)) \text{ in } D,\\ (u, v) = (0, 0) \text{ on } \partial D \times]0, \infty[\end{cases}$$

(1)

where *D* is a bounded open subset of \mathbb{R}^n with boundary ∂D , $n \geq 1$, a = a(s) is a continuous function with Lipschitz's constant *L* such that 0 where*p*and*P*are constants, $<math>(W_1, W_2)_{t \in [0,\infty[}$ is a two dimensional Wiener process, the maps $f_i : L^2(D) \times L^2(D) \to L^2(D), g_i : L^2(D) \to L^2(D)$, with i = 1, 2satisfies the following conditions

i.
$$||f_i(u_1, v_1) - f_i(u_2, v_2)||^2 \le J\left(||u_1 - u_2||^2 + ||v_1 - v_2||^2\right)$$
,
ii. $f_i(0, 0) = 0$ for $t \in [0, \infty[$,
iii. $||g_i(v_1) - g_i(v_2)||^2 \le K\left(||v_1 - v_2||^2\right)$,
iv. $g_i(0) = 0$ for $t \in [0, T]$,
with $J, K > 0$.

・ロト ・回 ト ・ヨ ト ・ヨ ・ クタぐ

I consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $(\mathcal{F}_{t \in [0, T]})$ is a right continuous filtration such that \mathcal{F}_0 contains all \mathcal{F} -null sets, E(X)denote the mathematical expectation of the random variable X, we abreviate a.s. for almost surely $\omega \in \Omega$. We write \mathcal{L} for the Lebesgue measure on $\mathbb{T} := [0, \infty[$. Let $H^{s}(D)$ denote the usual Sobolev space of order s with norm $\|\cdot\|_s$, and inner product $(\cdot, \cdot)_s$, $H_0^1(D)$ the Sobolev space of order 1 with zero boundary condition with dual space $H^{-1}(D)$, $H^0(D) = L^2(D)$ with norm $\|\cdot\| := \|\cdot\|_0$ and inner product $(\cdot, \cdot) := (\cdot, \cdot)_0.$

Let *B* a Banach space with norm $\|\cdot\|_B$, $\mathcal{B}(B)$ denote the Borel σ -algebra of *B*. The space $L^2(\Omega, \mathbb{T}; B)$ is the set of all $\mathcal{F} \otimes \mathcal{B}(\mathbb{T})$ -measurable process $u : \Omega \times \mathbb{T} \to B$ which are \mathcal{F}_t -adapted and $E(\int_0^T \|u\|_B^2 dt) < \infty$. Analogously the space $L^{\infty}(\Omega, \mathbb{T}; \mathbb{R})$ is the set of all $\mathcal{F} \otimes \mathcal{B}(\mathbb{T})$ -measurable process $u : \mathbb{T} \to \mathbb{R}$ which are \mathcal{F}_t - adapted and for almost everywhere $(\omega, t) \in \mathbb{T} \to \mathbb{R}$ which are \mathcal{F}_t - adapted and for almost everywhere $rocess \mathcal{F}_t$ -adapted. In this work $(W)_{t\in\mathbb{T}}$ is real Wiener process \mathcal{F}_t -adapted. Various constants will be denoted by c and $c(D) := \int_D dx$. We define the map $\mathcal{A} : H_0^1(D) \to H^{-1}(D)$ by

$$\langle \mathcal{A}u,\eta\rangle = a\left(\int_{D}u\,dx\right)\left(\nabla u,\nabla\eta\right)$$

for $\eta \in H_0^1(D)$.

I assume that

$$(\nabla u, \nabla u) = \|u\|_1^2$$
 for all $u \in H_0^1(D)$.

Let u_0 , v_0 be random variables L^2 -valued, \mathcal{F}_0 -measurable such that $E(||u_0||^2 + ||v_0||^2) < \infty$. In this work i mean that the stochastic process (u, v) is a solution

of the problem (1) in the following sense:

Definition

The stochastic process

 $(u(t), v(t))_{t \in \mathbb{T}} \in L^2(\Omega, \mathbb{T}; H_0^{-1}(D)) \times L^2(\Omega, \mathbb{T}; H_0^{-1}(D))$ with a.s. sample paths continuous in $L^2(D) \times L^2(D)$, is a solution of (1) if it satisfies the equation:

$$(u(t),\eta) + \int_{0}^{t} \langle Au,\eta \rangle (s) ds = (u_{0},\eta) + \int_{0}^{t} (f_{1}(u(s),v(s)),\eta) dW_{1}(s) + \int_{0}^{t} (g_{1}(v),\eta) ds$$

(v(t), \xi) + $\int_{0}^{t} \langle Av,\xi \rangle (s) ds = (v_{0},\xi) + \int_{0}^{t} (f_{2}(u(s),v(s)),\xi) dW_{2}(s) + \int_{0}^{t} (g_{2}(u),\xi) ds$
(2)

a.s. for all η , $\xi \in H_0^1(D)$ and $t \in \mathbb{T}$, where the stochastic integral is in the Itô sense.

I mean uniqueness in the sense of indistinguishable.

Theorem (Existence and Uniqueness of Strong Solution)

Suppose $p > J + \frac{K+1}{2}$ and p > 3K. The problem (1)has a solution, which is unique and has a.s. sample paths continuous in $L^2(D) \times L^2(D)$.

Theorem

Suppose that $2p - 2J - K - \frac{1}{2} > 0$. Then the solution $(u(t), v(t))_{t \in \mathbb{T}}$ obtained in Theorem of Existence and Uniqueness of Strong Solution satisfies

$$\lim_{t \to \infty} E \| u(t) \| \le (\| u_0 \| + \| v_0 \|).$$
(3)

References

- Edson A. Coayla-Teran, J. Ferreira, and P. M. D. Magalhães, Weak Solution for random nonlinear parabolic equations of nonlocal type. Random operators and Stochastic Equations. 16 (2008), 213–222.
- F. J. S. A. Corrêa, S. D. B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator. *Applied Mathematics and Computation* 147 (2004) 475–489.
- M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems. *Positivity* **3** (1999) 65–81.
- M. Chipot, The Diffusion of a population partly Driven by it's Prefences. *Arch. Rational Mech. Anl.* **155** (2000) 237–259.
- N. André and M. Chipot, A remark on uniqueness for quasilinear elliptic equations, *Proceedings of the Banach Center.* **33** (1996), 9–18.

Thank You!

2

・ロト ・聞 ト ・ ヨト ・ ヨトー