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Figure 1:

From random initial conditions the Kimura/voter model
quickly aggregates areas of one or the other species
(populationI yellow, Y red).

Abstract
We investigate the by now so called SJ model [1] not only in its
simples formulation as recently used, but an extended version,
the SJ model version II. In this we find the system to evolve
to low pathogenicity causing large critical fluctuations without
tuning the control parameter, a self-organization of critcality.

Figure 2:

Percolation clusters in the Kimura/voter model
build up after longer time.
(Color coding as in Fig. 1)

1 Introduction
Already Kimura suggested a model with two populations replacing each
other with equal probability, a neutral model for evolution, leading
eventually to fixation of on or the other population. Kimura’s model was
later reinvented in a different context, called the voter model, and more
rigorously investigated mathematically. However, in relevant evolution-
ary systems selection can play a role next to pure mutation asdescribed
by the neutral theory. Hence near-neutrality becomes an important re-
search area. We propose a model to describe accidental pathogens, with
a paradigmatic empirical system of bacterial meningitis, which includes
mutations between different strains of the bacteria, and via epidemio-
logical interaction of the hosts and pathogens also selection.
The model shows in its easiest version of two strainsI andY criti-
cal fluctuations with power law3/2 for outbreak sizes. This version
has recently been demonstrated to be in the universality class of the
Kimura/voter model [1], and is now coined the SJ-model (Stollenwerk-
Jansen model) [1]. This universality class is characteristic for two ab-
sorbing states, fixation of one or the other strainI or Y . All systems in
such a universality class share the same critical exponents.
In a second version with infinitely many strains evolution ofthe system
towards a critical state is observed, leaving most pathogens with only
minor pathogenicity, i.e. probability to cause disease. This model is
a valid candidate for a self-organized critical (SOC) system[2], since
it has infinitetly many absorbing states, like the for SOC paradigmatic
sand-pile models. We call this the SJ model version II.

2 The Kimura/voter model
Two speciesI andY can replace each other with transition ratesι,
respectivelyυ

Ii+Yj
υ

−→ Yi+Yj

Yi+Ij
ι

−→ Ii+Ij

on a lattice withN sitesi etc., at lattice sitei ∈ {1, ..., N} an type
Yi = 1, or notYi = 0, henceIi := 1−Yi = 1, stochastic
dynamics given for variablesYi ∈ {0, 1} by the master equation
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with adjacency matrixJij ∈ {0, 1}.

3 Properties
In mean field approximation [3] we obtain the simple ODE

d

dt
〈Y 〉 = (υ−ι)

Q

N
〈Y 〉 (N−〈Y 〉)

which is exactly neutral forυ = ι, hence d
dt

〈Y 〉 = 0.
The model has mean field exponentτ = 3/2 for the ”out-break size”,
here e.g. the distribution ofY introduced into a completelyI filled
environment, when getting extinct again forε := ι−υ → 0, see
[1]. In spatial simulations one can observe that an intitially random
distribution of the 2 populations, Fig. 1, shows after a transient the for
critical systems typical percolation structure atε = 0, Fig. 2.

4 Bacterial meningitis
Neisseria meningitidis, a bacterium which can cause meningitis
and septicaemia, often lives a commensal with its human host
and is unnoticed by the host. Only rarely the bacterium enters
the blood stream and then causes major dammage to the host, an
evolutionary cul de sac for the bacterium. The rarer a mutantof
this commensal comits this accidental mistake the more often it
will be found in the host population, hence strains with low and
near to none pathogenicity will dominate at the population level,
but still occasionally cause disease outbreaks [4].

5 The SIRYX model
Am model for such accidental pathogens can be described as
an SIR model for harmless carriage, and includes mutation to
carriageY with a bacterium with non-zero probabilty to cause
a disease caseX. The reaction schemes for transitions of host
classes is

Ri
α

−→ Si

Si+Ij
β−µ
−→ Ii+Ij

µ
−→ Yi+Ij

Ii
γ

−→ Ri

Si+Yj
β−ν−ε
−→ Yi+Yj

ν
−→ Ii+Yj

ε
−→ Xi+Yj

Yi
γ

−→ Ri

which gives a master equation formulated along the lines of the
above shown Kimura/voter model with transition ratesα, β, γ
from the basic SIR model and in addition mutationµ, ν and
pathogenicityε.

6 Small pathogenicity,

large epidemics
Model parameters: basic epidemic parametersα := 0.1,
β := 0.2 and γ := 0.1 on a fast time scale. Mutation
ratesµ = ν := 0.0001 on a slow time scale. Pathogenicity
ε varying on an intermediate time scale, e.g.ε := 0.05.
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Figure 3:
For relatively large pathogenicityε := 0.05 (upper two
graphs) we find low numbers of mutant strainsY causing
stochastic numbers of disease casesX. For 10 times smaller
ε := 0.005 highly fluctuating numbers of mutant carriersY
cause stochastically fluctuating as many disease casesX as with
much higher pathogenicity (lower two graphs).

7 Power law analytically
In a simplified model, where the SIR-subsystem is assumed in
stationarity (due to its fast dynamics), we can show analytically
divergence of variance and power law behaviour for the size of
the epidemicsp(X) as soon as the pathogenicity is going to
zero. For the size distribution of the epidemic we obtain power
law behaviour

pε(X) := lim
t→∞

p(Y = 0, X, t) ∼ X
−

3
2

for ε → 0 and largeX. This was obtained by approximations
to a solution with the hypergeometric function [5]. This critical
exponent corresponds to the mean field exponent of the voter
universality class. Also other exponents in mean field and in
dimension 1 below the upper critical dimension have been found
to be equal in the SIRYX model as in the voter model.

8 Evolution towards criticality
Introducing strains with many different pathogenicitiesε leaves
the system ultimately being dominated by strains with smallε.
p(ε) shifts towards smallε, as time passes [6].
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Figure 4: a) Theoretical curves for timest = 1, t = 20, t =
100. b) Comparison between simplified model and simulations
of the SIRYX system for timet = 100.

In a branching process approximation we find for the distribution
of pathogenicity, i.e. frequency of mutantsY (ε) with certain
pathogenicityε
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In a spatial version of the complete model, Fig. 5, this behaviour
is confirmed by investigating the mean pathogenicity, Fig. 5b),
going beyond the presently studied SJ model [1] in its simplest
version.
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Figure 5:
a) Randomly varying pathogenicity, colored in blue to red forde-
creasing pathogenicity of mutantsY . The other states are S→
green, I→ yellow, R→ white, and X→ black. b) Mean value
of pathogenicityε over time.
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