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• Talk Nico Stollenwerk:

Modelling and model evaluation on empirical data in

epidemiology: dynamic noise, chaos and predictability

Parameter estimation framework

• Talk Máıra Aguiar:

Descriptive and Predictive models of dengue epidemi-

ology: an overview

• Here: Model analysis with Bifurcation analysis tech-

niques with the focus on a two-strain dengue fever

model



Outline

• Modeling two-strain dengue fever model

• Extension of classical compartment (SIR) model

• Analysis of the long-term dynamics using bifurcation

theory

• Robustness w.r.t. asymmetry



Bifurcation analysis: Nonlinear Dynamical System Theory

Short-term dynamics

• Solving initial values problem

• Numerical simulations

Long-term dynamics

• Limit sets: equilibria, limit cycles and chaotic attrac-
tors

• Stability of limit sets: linearisation around limit set
(eigenvalues, multiplier) or follow trajectory (Lyapunov
exponents)



Dependency on parameters

• Critical parameter values (bifurcations) where dynam-

ics changes qualitatively: eigenvalue is zero or multi-

pliers is one

• Continuation of bifurcation points gives regions in pa-

rameter space with the same type of long-term dynam-

ics



Three variants for 2-strain SIR model

Model 1 N. Ferguson, R. Anderson, and S. Gupta.
The effect of antibody-dependent enhancement on the transmis-
sion dynamics and persistence of multiple-strain pathogens.
Proc. Natl. Acad. Sci. USA, 96(9):790–794, 1999.

Model 2 L. Billings, I. B. Schwartz, L. B. Shaw, M. McCrary, D. S. Burke,
and D. A. T. Cummings.
Instabilities in multi-serotype disease models with antibody-dependent
enhancement.
Journal of Theoretical Biology, 246:18–27, 2007.

Model 3 M. Aguiar, S. Ballesteros, B. W. Kooi, and N. Stollenwerk.
The role of seasonality and import in a minimalistic multi-strain
dengue model capturing differences between primary and sec-
ondary infections: complex dynamics and its implications for data
analysis.
Journal of Theoretical Biology, 289:181–196, 2011.
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Dengue fever: Model [3] with α < ∞
with antibody-dependent enhancement (ADE)
and temporary cross immunity

Ṡ = − β

N
S(I1 + φI21)− β

N
S(I2 + φI12) + μ(N − S)

İ1 =
β

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α+ μ)R1

Ṙ2 = γI2 − (α+ μ)R2

Ṡ1 = − β

N
S1(I2 + φI12) + αR1 − μS1

Ṡ2 = − β

N
S2(I1 + φI21) + αR2 − μS2

İ12 =
β

N
S1(I2 + φI12)− (γ + μ)I12

İ21 =
β

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR



Var. Description

S from N by birth: Susceptibles to both strains

Ii from S: Infected with strain i

either by meeting Ii or by meeting Iji

Ri from Ii: Recovered from infection with strain i

Si from Ri: Immune against first infection strain i

but susceptible to j

Iij from Si: Reinfected with strain j

either by meeting I2 or by meeting I12

R from Iij’s: Immune to both strains

Two different strains:

i = 1, j = 2 and i = 2, j = 1

R = N −(S+ I1+ I2+R1+R2+S1+S2+ I12+ I21) where

N is population size



Par. Description Values

N population size 100

μ new born susceptible rate 1/65

γ recovery rate 52

β0 infection rate 2γ

α temporary cross-immunity rate ∞, 2, free

ρ external infected portion 0, free

φ ratio of contribution to force of infection 0.9, free

η seasonal force 0,0.2, free

T0 period of system



Model [2]
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Dengue fever: Model [2] with α = ∞
with antibody-dependent enhancement (ADE)
without temporary cross immunity and without co-infection

Ṡ = − β

N
S(I1 + φI21)− β

N
S(I2 + φI12) + μ(N − S)

İ1 =
β

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α+ μ)R1

Ṙ2 = γI2 − (α+ μ)R2

Ṡ1 = − β

N
S1(I2 + φI12) + αR1γI1 − μS1

Ṡ2 = − β

N
S2(I1 + φI21) + αR2γI2 − μS2

İ12 =
β

N
S1(I2 + φI12)− (γ + μ)I12

İ21 =
β

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR



Model [1]
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Dengue fever: Model [1] with α = ∞
with antibody-dependent enhancement (ADE)
without temporary cross immunity and with co-infection

Ṡ = − β

N
S(I1 + φI21)− β

N
S(I2 + φI12) + μ(N − S)

İ1 =
β

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α+ μ)R1

Ṙ2 = γI2 − (α+ μ)R2

Ṡ1 = − β

N
S1(I2 + φI12) + αR1

β

N
S(I1 + φI21)− μS1

Ṡ2 = − β

N
S2(I1 + φI21) + αR2

β

N
S(I2 + φI12)− μS2

İ12 =
β

N
S1(I2 + φI12)− (γ + μ)I12

İ21 =
β

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR



Co-infection is allowed and individuals become susceptible

(S1 and S2) to the other strain, immediately after the first

infection.

Here the individuals that leave the susceptible class S be-

come primary and secondary infected simultaneously and

consequently one individual can be in two classes at the

same time. Therefore this system cannot be closed by a

class of recovered from the two infections R



Bifurcations

Symbol Description bifurcation

Equilibrium

H Hopf

Equilibrium, limit cycle

T Tangent (saddle node)

TC Transcritical

P Pitchfork

Limit cycle

TR Torus (Neimark-Sacker)



T, P

TC



H



Model [1] with α = ∞
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Model [2] with α = ∞
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Conclusions (1)

• The results for the two models without temporary cross-

immunity [1] and [2] show a similar bifurcation pattern.

• A Hopf bifurcation, subcritical, in system [2] and, su-

percritical, in system [1] is the organizing center for

complex dynamics. At a double flip point originating

from these Hopf bifurcations period-two limit cycles

emanate which finally lead to chaotic dynamics.



Two-parameter bifurcation diagram: α vs φ
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Model [3] with α = 52

with tem-
porary
cross-
immunity
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Conclusions (2)

• For the model with temporary cross-immunity [3] these

similar bifurcation patterns occur as in models [1] and

[2].

• Superposed on this dynamics there is complex behaviour

which originates from a second Hopf bifurcation. The

origination limit cycle becomes unstable at a Torus bi-

furcation. The dynamics remains on the torus and is

quasi-periodic. For higher φ values this dynamics be-

comes chaotic.

• For even higher values the two chaotic attractors merge.



Model [3]
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One-parameter bifurcation diagram: α = 2

total infected I1 + I2 + I12 + I21

φ
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All three models possess Symmetries



Symmetries

Symmetries due to the multi-strain structure of the model

Symmetry transformation matrix S

S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S
I1
I2
R1

R2

S1

S2

I12
I21
R



We have the following symmetry:

x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∗
I∗1
I∗2
R∗

1
R∗

2
S∗
1

S∗
2

I∗12
I∗21
R∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ Sx∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∗
I∗2
I∗1
R∗

2
R∗

1
S∗
2

S∗
1

I∗21
I∗12
R∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



One-parameter bifurcation diagram: α = 2,
φ free variable

I1 and I2

φ
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For α = 2

• below Hopf ⇒ Fixed equilibrium

• Hopf H and Pitchfork P− ⇒
Symmetric stable limit cycle

• Pitchfork P−and Torus TR ⇒
Two noninvariant S-conjugate cycles

• Pitchfork P− and Pitchfork P+ ⇒ Chaos



limit cycles: φ = 0.12, between H and P−
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limit cycles: φ = 0.4, between H and P−
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limit cycles: φ = 0.4, between H and P−
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limit cycles: φ = 0.42, between P− and TR
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limit cycles: φ = 0.42, between P− and TR
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limit cycles: φ = 0.6, between TR and P+
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One-parameter bifurcation diagram: α = 2,
φ free variable
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Two-parameter bifurcation diagram:

α, φ free variables
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Introduction of asymmetry

We assume that the infection rate for the two strains differ

β1 = β + ε and β2 = β − ε with β = 2γ

For ε = 0 the system is symmetric again

This is the natural starting point for increasing the degree

of asymmetry

All other parameters are still symmetric. In reality also

other asymmetries will attributes to the effects studied



Asymmetric dengue fever model

Ṡ = −β1

N
S(I1 + φI21)− β2

N
S(I2 + φI12) + μ(N − S)

İ1 =
β1

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β2

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α+ μ)R1

Ṙ2 = γI2 − (α+ μ)R2

Ṡ1 = −β2

N
S1(I2 + φI12) + αR1 − μS1

Ṡ2 = −β1

N
S2(I1 + φI21) + αR2 − μS2

İ12 =
β2

N
S1(I2 + φI12)− (γ + μ)I12

İ21 =
β1

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR

Where:
β1 = β + ε and β2 = β − ε with β = 2γ



ε = 0
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ε = 0, 0.1 ,0.5 ,1
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ε = 1
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ε = 1
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φ = 0.4 φ = 0.42 φ = 0.6 φ = 0.9
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basic reproduction number (or ratio)

For ε = 0 we have R0 = β/(γ + μ) > 1

R0 < 1: disease-free equilibrium x0 is stable

R0 > 1: disease-free equilibrium x0 is unstable: generally

leading to time-convergence to a stable endemic equilib-

rium x̂.

Disease-free equilibrium :

x0 =
(
S0 I01 I02 I012 I021 S0

1 S0
2 R0

1 R0
2 R0

)T

=
(
N 0 0 0 0 0 0 0 0 0

)T



Disease-free equilibrium

All individuals are susceptible S0 = N and all other classes
are zero

The Jacobian matrix of the 9 dimensional system evaluated
at the disease-free equilibrium

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ −β1 −β2 −β2φ −β1 0 0 0 0
0 β1 − γ − μ 0 0 β1φ 0 0 0 0
0 0 β2 − γ − μ β2φ 0 0 0 0 0

0 0 0 −γ − μ 0 0 0 0 0

0 0 0 0 −γ − μ 0 0 0 0
0 0 0 0 0 −μ 0 α 0
0 0 0 0 0 0 −μ 0 α
0 γ 0 0 0 0 0 −α− μ 0
0 0 γ 0 0 0 0 0 −α− μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



The eigenvalues are:

λ1 = −(γ + μ) , λ2 = −(γ + μ) ,

λ3 = −(α+ μ) , λ4 = −(α+ μ) ,

λ5 = −μ ,

λ6 = −μ ,

λ7 = −μ ,

λ8 = β + ε− γ − μ ,

λ9 = β − ε− γ − μ .

Since all parameters except ε are positive the stability de-

pends on the sign of the two eigenvalues: β + ε − γ − μ

and β− ε− γ−μ. So, a one-strain dengue virus is endemic

when either β + ε > γ + μ or β − ε > γ + μ



There are two one-strain models namely:

x̂1 =
(
Ŝ Î1 0 0 0 Ŝ1 0 R̂1 0

)T

x̂2 =
(
Ŝ 0 Î2 0 0 0 Ŝ2 0 R̂2

)T

The one-strain x̂1 can invade the disease-free system and

becomes endemic when ε > γ + μ− β and with β = 2γ we

get ε > μ− γ.

Hence, within the interval ε ∈ [−(γ − μ), γ − μ], including

ε = 0, both one-strains separately are endemic or invasive.

The transcritical bifurcations denoted by TC0 are given by

ε = ∓(γ − μ)
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Now we consider the conditions for both strains to be
present simultaneously.

Expression that fixes the curve TC where the equilibrium
equals x̂i, i = 1,2 changes stability

Five eigenvalues λi, i = 1, · · · ,5 are the same as earlier.
Last four of the 9 eigenvalues are:

λ6 = − β1 μ

γ + μ

λ7 =
−β1 μ+

√
μ2β1

2 − 4μβ1 (μ+ γ)2 + 4μ (μ+ γ)3

2(γ + μ)

λ8 =
−β1 μ−

√
μ2β1

2 − 4μβ1 (μ+ γ)2 + 4μ (μ+ γ)3

2(γ + μ)

λ9 =
β2 φαγ (β1 − γ − μ)− (β1 − β2)(α+ μ)(γ + μ)2

(μ+ α)(γ + μ)β1



The single eigenvalue that can change sign under (positive)

parameter variation is λ9 while the real parts of all other

eigenvalues are always negative.

Thus the condition that determines the transcritical bifur-

cation TC reads

0 = (β − ε)φαγ(β + ε− γ − μ)− 2ε(μ+ α)(γ + μ)2

Note that when λ9 becomes positive the five dimensional

one-strain system S, S1, I1, R1, R gets invaded by a five

dimensional system, namely the three components S2, I2,

R2 together with the two double infected classes I12 and

I21



One-parameter diagram φ = 0.4

perturbation parameter: ε

ε

I 1
|

I 2

TC0H TC

6050403020100

10

7.5

5

2.5

0

7.5

5

2.5

0

Stable Unstable



Hopf bifurcation

Equation for Hopf bifurcation can be derived in principle is

a similar way

Here we show numerically calculated Hopf bifurcation curve

in a two-parameter diagram φ-ε



Two-parameter diagram φ-ε
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Conclusions (1)

• With modelling multi-strain epidemics it is tempting
to assume identical epidemiological parameters for all
strains to minimise the number of parameters and equa-
tions

• Motive is that all strains are dengue virus correlated
with Aedes aegypti vectors

• Taking exact equal parameter values implies mathe-
matical model possesses symmetry

• Robustness of structurally unstable pitchfork bifurca-
tion is important: organizing center for branches on
which complex dynamics occur



Conclusions (2)

• To study existence of endemic equilibrium the basic

reproduction number R0 is introduced in the epidemi-

ological literature.

• R0, is the size of the second generation of infected

going back to one infected individual in an otherwise

totally susceptible population.



Conclusions (3)

• R0 = 1 is directly related to an equilibrium. Related to

an invasion criterion only when evaluated at a disease-

free equilibrium (TC).

• In certain situations R0 = 1 directly relates to the in-

vasion criterion.

When the growth rate of the infected class is propor-

tional to the size of the infected class itself and the

boundary equilibrium results from the zero size of the

class then the invasion rate is equal to the growth rate

of the infected class



Conclusions (4)

• Classification of exchange of stability between a bound-

ary equilibrium and an interior equilibrium as a trans-

critical bifurcation puts the evaluation of the invasion

threshold into the context of bifurcation theory.

• Possible effects of environment are taken into account

• Different types of transcritical bifurcation, namely catas-

trophic and non-catastrophic, and various degenerated

forms, for instance coalition with a tangent (or saddle-

node) bifurcation.



Conclusions (5)

• Bifurcation analysis approach is uniform for all types of

long-term dynamics (equilibrium, limit cycle or chaotic

attractor)

• Bifurcation analysis and Lyapunov exponent analysis

are complementary

• Algorithms and computer packages (AUTO, MatCont)

are available to calculate the thresholds.

• Asymmetry matters is important for parameter estima-

tion
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