Metabolic dynamics acceleration during the life cycle of an individual

Metabolic dynamics acceleration during the life cycle of an individual

Energy Budgets

Basic processes	Life history events	Life stages
 Feeding Digestion Storing Growth Maturation Maintenance Reproduction Product formation Aging 	 zero: start of development birth: start of feeding start of acceleration metamorphosis: end of acceleration puberty: end of maturation start of reproduction 	embryo juvenile adult

All have ecological implications All interact during the life cycle

Quantitative Energetics

Biochemical approach: Chemically explicit

classify compounds in important and unimportant ones model few import compounds **Problems**:

mass & energy conservation is lost as modeling tool/check time scales of transformations really short relative to life cycle role of unimportant compounds might be important spatial structure difficult to take into account

Balance approach: Pools of metabolites

partition biomass in a few metabolic pools assume strong homeostasis for each pool: generalised compounds assume weak homeostasis: constant pool ratios during growth at constant food **Problems**:

homeostasis is not perfect abstract, indirect testing

Model: more than formula where variables and parameters relate to physical or chemical quantities

Criteria for general energy models

Quantitative

Based on explicit assumptions that together specify all quantitative aspects to allow for mass and energy balancing

Consistency

Assumptions should be consistent in terms of internal logic, with physics and chemistry, as well as with empirical patterns

• Simplicity

Implied model(s) should be simple (numbers of variables and parameters) enough to allow testing against data

• Generality

The conditions species should fulfill to be captured by the model(s) must be explicit and make evolutionary sense

• Explanatory

The more empirical patterns are explained, the better the model

From Sousa et al 2010 Phil. Trans. R. Soc. Lond. B **365**: 3413-3428

Empirical special cases of DEB 11.1

year	author	model	year	author	model
1780	Lavoisier	multiple regression of heat against mineral fluxes	1950	Emerson	cube root growth of bacterial colonies
1825		eory is axiomatic.	1951	Huggett & Widdas	foetal growth
1889	Arrhenius Dase	temperature dependence of	1951 S	Weibull	survival probability for aging
1891	Huxleynot I	nleanty to hgilue em	pinica	Panodels	diffusion limitation of uptake
1902	Henri	MichaelisMenten kinetics	1957	Smith	embryonic respiration
1905	Beckman n	bilinear functional response	าซอิโร	Leudeking & Piret	microbial product formation
1910	Hill	Cooperative binding	1959		hyperbolic functional response
1920	Pütter	von Bertalanify growth of	Lase: 1962	Marr & Pirt	maintenance in yields of biomass
1007	the (Data Dening these		els support	DEB theory
1927	Pean	logistic population growth	1973	Droop	reserve (cell quota) dynamics
1928	Fisher & Tib bitIS Ma	akes DEB theory	very v	well tested a	water loss in bird eggs gainst data
1932	Kleiber	respiration scales with body weight ^{3/4}	1975	Hungate	digestion
1932	Mayneord	cube root growth of tumours	1977	Beer & Anderson	development of salmonid embryos

Empirical patterns: stylised facts

Feeding

During starvation, organisms are able to reproduce, grow and survive for some time At abundant food, the feeding rate is at some maximum, independent of food density

Growth

Many species continue to grow after

reproduction has started

Growth of isomorphic organisms at abundant food is well described by the von Bertalanffy

For different constant food levels the inverse von Bertalanffy growth rate increases linearly with ultimate length

The von Bertalanffy growth rate of different species decreases almost linearly with the maximum body length

Fetuses increase in weight approximately proportional to cubed time

Reproduction

Reproduction increases with size intra-specifically, but decreases with size inter-specifically

Respiration

Animal eggs and plant seeds initially hardly use O_2 The use of O_2 increases with decreasing mass in embryos and increases with mass in juveniles and adults The use of O_2 scales approximately with body weight raised to a power close to 0.75 Animals show a transient increase in metabolic rate after ingesting food (heat increment of feeding)

Stoichiometry

The chemical composition of organisms depends on the nutritional status (starved *vs* well-fed) The chemical composition of organisms growing at constant food density becomes constant

Energy

Dissipating heat is a weighted sum of 3 mass flows: CO_2 , O_2 and N-waste

From Sousa et al 2008 Phil. Trans. R. Soc. Lond. B **363**:2453 -2464

Homeostasis 1.2

strong homeostasis

constant composition of pools (reserves/structures) generalized compounds, stoichiometric constraints on synthesis

weak homeostasis

constant composition of biomass during growth in constant environments determines reserve dynamics (in combination with strong homeostasis)

structural homeostasis

constant relative proportions during growth in constant environments isomorphy .work load allocation

thermal homeostasis

 $ectothermy \rightarrow homeothermy \rightarrow endothermy$

acquisition homeostasis

supply \rightarrow demand systems

development of sensors, behavioural adaptations

Standard DEB scheme 2b

1 food type, 1 reserve, 1 structure, isomorph

time: searching & handling feeding \propto surface area weak & strong homeostasis κ-rule for allocation to soma maintenance has priority somatic maint \propto structure maturity maint \propto maturity stage transition: maturation embryo: no feeding, reprod juvenile: no reproduction adult: no maturation maternal effect: reserve density at birth equals that of mother initially: zero structure, maturity

Change in body shape 4.2.2

Isomorph:

surface area \propto volume^{2/3} volumetric length = volume^{1/3}

V0-morph: surface area ∝ volume^o

V1-morph: surface area ∝ volume¹

Change in body shape 4.2.2

Euglena

surface area \propto radius volume \propto radius²

V¹/₂-morph:

surface area \propto volume^{1/2}

Reserve residence time 2.3.1b

$$t_E = \frac{E}{\dot{p}_C} = \frac{1 + f/g}{\dot{v}/L + \dot{k}_M(1 + L_T/L)}$$

$$t_{Em} = (\dot{k}_M g)^{-1} \text{ for } f = 1; L = L_m; L_T = 0$$

$$t_{Em} = L_m/\dot{v}$$

enzymes in E loose their activity (first order)

within individual: t_E increases with L individual looses metabolic performance with L

inter-species: $t_{Em} \propto L_m$, $E_m \propto L_m^4$ active enzyme density independent of L_m

- f scaled functional response
- *E* reserve
- \dot{p}_C mobilisation power
- \dot{v} engergy conductance
- g energy investment ratio
- k_M somatic maint. rate coeff.
- L structural length
- L_m maximum length
- L_T heating length

κ-rule for allocation 2.4

Topological alternatives 11.1c

Test of properties 11.1d

model	F2	G2	R2	R4	S1	E2
$_{B}\kappa_{C}^{R0}$	_	-/-	+	+	+/-	_
$_{R}^{n}\kappa_{C}^{R1}$	—	_/_	+	+	+/-	—
$c\kappa^{R}_{C}$	+	+/-	+	+	+/-	+
$C \kappa_{R1}^R$	+	+/-	+	+	+/-	—
A_C	+	_/_	+	+	+/+	+
$\mathbf{A}R$	+	+/+	_	+	+/+	+
	+	?/?	_	_	+/+	+
\vec{A}_{G}^{R}	+	+/-	+	+	+/+	+
${}_{D}P$	_	_/_	_	_	+/-	_
$C \mathbf{P}$	+	—/—	—	+	+/-	+
P	+	?/?	—	—	+/+	—
Ŝ	+	?/?	—	—	+/+	_
\mathbf{c}^R	+	+/+	—	+	+/+	—
$D_{\mathbf{N}}^{\mathbf{S}}R0$	_	_/_	—	—	+/-	—
$\frac{RS}{R}R1$	_	_/_	—	—	+/-	_
R^{R}	+	+/+		+	+/-	+
GD I	+	?/?		_	+/+	_
J_C	+	_/_	+	+	+/+	_
$c.I_{CO}$	+	_/_	+	+	+/-	+
$a J_{a1}$	+	_/_	+	+	+/-	_
$_{R}J_{C}$	_	_/_	+	+	+/-	_

Empirical pattern

F2 During starvation, organisms are able to reproduce, grow and surviveG2 The inverse von Bertalanffy growth rate increases linearly with ultimate length both intra-specifically (or different constant food levels) and inter-specifically

- **R2** Reproduction increases with size intra-specifically, but decreases with size inter-specifically
- R4 Growth can be simultaneous with reproduction,

but growth can also cease long before reproduction is initiated.

 ${\bf S1}$ The chemical composition of organisms depends on the nutritional status

E2 Dissipating heat is a weighted sum of three mass flows: carbon dioxide, dioxygen and nitrogenous waste

> From Lika & Kooijman 2011 J. Sea Res, **66**: 381-391

- + empirical pattern is matched
 - empirical pattern is not matched
- ? result depends on numerical analysis
- */* fixed/variable κ

Allocation to soma 10.5.2

Lika *et al* 2011 , 2013 *J. Sea Res*, **22**: 278-288

Selection for reproduction

parameter at 20 $^{\circ}$ C	symbol	unit	RJ, f	RJ, m	WL, f	WL, m	IR, f	IR, m
spec. assimilation rate	$\{\dot{p}_{Am}\}$	J/d.cm ²	427	372	270	301	435	178
energy conductance	\dot{v}	cm/d	0.0083	0.0090	0.0113	0.0111	0.00965	0.0155
fraction to soma	κ	-	0.2486	0.4317	0.5051	0.4306	0.3492	0.6734
spec som. maint. cost	$[\dot{p}_M]$	J/cm ³	21.38	26.82	15.79	14.39	18.09	9.739
mat. maint. rate coeff.	\dot{k}_J	1/d	0.0025	0.0039	0.0020	0.0020	0.0020	0.0011
spec. cost structure	$[E_G]$	J/cm ³	9918	9864	9948	9947	7709	10600
maturity at birth	E_{H}^{b}	J	8.99e4	4.61e4	8.14e4	9.72e4	9.12e4	7.43e4
maturity at puberty	E_{H}^{p}	J	2.67e6	1.65e6	2.87e6	3.68e6	6.53e6	2.69e6
aging acceleration	\ddot{h}_a	$1/d^2$	2.72e-49	1.32e-45	2.32e-22	1.41e-21	5.24e-21	8.69e-22

Max reprod vs optimal max reprod

 \dot{R} max product rate \dot{R}_m optimized \dot{R} s_R \dot{R}/\dot{R}_m

Specific somatic maintenance 10.5.3

Kooijman 2013, Waste to hurry. *Oikos*, to appear

Thalia 8 kJ/d.cm³

Primary parameters standard DEB model 8.2.1

assimilation	$\{\dot{p}_{Am}\}$	22.5	$\mathrm{Jd^{-1}cm^{-2}}$	max spec assimiation rate
feeding	$\{\dot{F}_m\}$	6.5	$\mathrm{Id}^{-1}\mathrm{cm}^{-2}$	max spec searching rate
digestion	κ_X	0.8	_	digestion effiency
growth	$[E_G]$	2800	J cm ^{−3}	spec cost for structure
mobilisation	\dot{v}	0.02	${ m cm}{ m d}^{-1}$	energy conductance
heating, osmosis	$\{\dot{p}_T\}$	0	$\mathrm{Jd^{-1}cm^{-2}}$	spec somatic maintenance costs
turnover, activity	$[\dot{p}_M]$	18	$\mathrm{Jd^{-1}cm^{-3}}$	spec somatic maintenance costs
regulation, defence	\dot{k}_J	0.002	d^{-1}	maturity maintenance rate coeff
allocation	κ	0.8	—	allocation fraction to soma
reproduction	κ_R	0.95	—	reproduction efficiency
life cycle	E_{H}^{b}	0.285	J	maturity at birth
life cycle	E_{H}^{p}	166	J	maturity at puberty
ageing	\ddot{h}_a	10^{-6}	d ⁻²	ageing acceleration
ageing	s_G	0	—	Gompertz stress coefficient
temperature	T_A	8000	K	Arrhenius temperature
For zoom factor - 1	$1 \rightarrow T -$	- 202 1/		

For zoom factor z = 1 at $T_{ref} = 293 \text{ K}$ For other z values, multiply $\{\dot{p}_{Am}\}$ and \ddot{h}_a with z E_H^b , E_H^p with z^3

$$\begin{split} z &= L_m / L_m^{\rm ref} \\ L_m &= \kappa \{ \dot{p}_{Am} \} / [\dot{p}_M] \\ L_m^{\rm ref} &= 1 \ {\rm cm} \end{split}$$

Kooijman 1986 *J. Theor. Biol.* **121**: 269-282

Reproduction rate & investment

Radiata Bilateria Platyzoa Lophotrochozoa Ecdyspzoa Invert deuterostomes Ectothermic vert Endothermic vert

Scaling of respiration 8.2.2d

Respiration: contributions from growth and maintenance Weight: contributions from structure and reserve

	intra-species	inter-species
maintenance	$\propto L_T L^2 + L^3$	$\propto L_T L^2 + L^3$
growth	$\propto L_g L^2 - L^3$	0
<u>reserve</u> structure	$\propto L^{O}$	$\propto L$
respiration weight	$\propto \frac{L_s L^2 + L^3}{d_V L^3 + d_E L^3}$	$\propto \frac{L_T L^2 + L^3}{d_V L^3 + d'_E L^4}$

L	structural length	L_T	heating length	
L_g	constant	L_s	constant	Kooijman 1986
d_V	spec density of structure	d_E	spec density of reserve	J Theor Biol 121 : 269-282

Metabolic rate 8.2.2e

Data: Richman 1958; curve fitted from DEB theory

Data: Hemmingson 1969; curve fitted from DEB theory

Embryonic development 2.6.2d

Acceleration of development 7.8.2c

no

acceleration

development

indirect

Pseudophryne bibronii

Geocrinia vitellina

yes

Crinia georgiana

Crinia nimbus

direct

Acceleration of development

Acceleration of metabolism

Acceleration of metabolism

Stage transitions at maturity thresholds

	Stage	Agehpf	E_H mJ			Stage	Age hpf	
3	2-cell	0.75	0.01		Θ	Shield	6	
Ő	4-cell	1	0.02	\bigcirc	0	75%-epiboly	8	
3_	8-cell	1.25	0.02	\bigcirc	\bigcirc	90%-epiboly	9	
Ö	16-cell	1.5	0.02	\bigcirc	\sim	Bud	10	
\bigcirc	32-cell	1.75	0.02	~	\bigcirc	3-somite	11	
_ 🔭	64-cell	2	0.03	0	0	6-somite	12	
<u>س</u>	128-cell	2.25	0.03	9	\bigcirc	14-somite	16	
	256-cell	2.5	0.04	67)	21-somite	19.5	
	512-cell	2.75	0.05		(OP)	26-somite	22	
	1k-cell	3	0.07			Prim-6	25	
	High	3.33	0.088	S	07	Prim-16	31	
	Oblong	3.66	0.11	60	an and inclusion and a	Prim-22	35	
\mathbb{C}	Sphere	4	0.14	đ	the state of the second	High-pec	42	
	Dome	4.33	0.171	E.S.	and the contraction of the second	Long-pec	48	
Ĩ	30%-epiboly	4.66	0.20	()		Pec-fin	60	
$\overline{\bigcirc}$	50%-epiboly	5.25	0.27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	att and a more than a second second	Protruding-mouth	72	
9	Germ-ring	5.66	0.33	ŶĊ				

Danio rerio 28.5°C

7.8.2a

Augustine et al 2011 Comp. Biochem. Physiol. A **159** :275–283

Stage transitions at maturity thresholds

7.8.2b

< birth : isomorph birth-metamorphosis: V1-morph > metamorphosis : isomorph

Twinning: separation of cells 2.6.4

 E_0^{\min} initial reserve at min nutrition max structural length of species

 L_i

reserve density at birth = reserve density of mother Parameter estimates from add my pet 2012/06/17, egg development only

Evolution of DEB systems 10.3

Evolution of DEB systems 10.3a

- Start: variable biomass composition, passive uptake
- Strong homeostasis \rightarrow stoichiometric constraints
- Reserves: delay of use of internalised substrates \rightarrow storage, weak homeostasis
- Maintenance requirements: turnover (e.g. active uptake by carriers), regulation
- Maintenance from reserve instead of substrate; increase reserve capacity
- Control of morphology via maturation; κ -rule \leftrightarrow cell cycle
- Diversification of assimilation (litho- \rightarrow photo- \rightarrow heterotrophy)

Eukaryotisation: heterotrophic start; unique event?

- Syntrophy & compartmentalisation: mitochondria, genome reorganisation
- Phagocytosis, plastids (acquisition of phototrophy)

Animal trajectory: biotrophy

- Reduction of number of reserves
- Emergence of life stages
- Further increase of maintenance costs
- Further increase of reserve capacity
- Socialisation
- Supply \rightarrow demand systems

Plant trajectory: site fixation

- Differentiation of root and shoot
- Emergence of life stages
- Increase of metabolic flexibility (draught)
- Nutrient acquisition via transpiration
- Symbioses with animals, fungi, bacteria (e.g. re-mineralisation leaf litter, pollination)

