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Physical existence of  fractional order systems

• Wheather/climate

• Economy/finance

• Biology/Genetics

• Music

• Biomedics

• Physics

• …
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Fractionality in Nature and Science 

• 1/f noises  

• Long range processes (Economy, Hydrology)

• The fractional Brownian motion 

• The constant phase elements

• Music spectrum

• Network traffic
• Biological processes - Deterministic Genetic Oscillation  

• Heat Conduction in a Porous Medium
• Geometry 

• …
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Rule of thumb

• Self-similar

• Scale-free/Scale-
invariant

• Power law

• Long range 
dependence (LRD)

• 1/f a noise

• Porous media
• Particulate
• Granular
• Lossy
• Anomaly
• Disorder
• Soil, tissue, electrodes, 

bio, nano, network, 
transport, diffusion, 
soft matters …



Engineering applications

12

Control
Filtering
Image processing
System modelling – NMR, Diffusion, respiratory 
system, muscles, neurons
Calculus of variations - Optimization 
Chaos
Fractals



• In the very beginning of calculus 
Leibnitz introduced the notation 

    Soon he received an  enquiry from 
L’Hôpital: 

What if n is 1/2? 
• Leibnitz’s replay:

 
It will lead to a paradox;  a 

paradox from which  one day useful 
consequences will be drawn.

d
n

dt
n  

Birth and evolution
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•For three centuries fractional calculus developed mainly as a 
pure theoretical mathematical discipline.
•In the last decades: description of dynamic behavior of 
various physical systems and real materials.
•Main reason: fractional derivatives and integrals, by sharing 
and unified definition as convolution integrals, provide an 
excellent instrument for the description of memory and 
hereditary properties.
•Nowadays: electrochemistry, diffusion, probability, 
viscoelasticity and hereditary mechanics, control theory, and 
others.

Birth and evolution
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Example: ECG beat and noise
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Figure 12 - Original and "clean" beats. 
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Figure 13 - Noise signal. 

 
The plot of the histogram of this signal is presented 
in Figure 14. Power spectral density estimates are 
shown in Figure 15. Observing this chart, it is 
possible to realise the similarities between this 
signal and a gaussian signal. 
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Figure 14 - Histogram of the noise signal. 

 
To conclude the presentation of the application of 
AA to ECG, the weight sequence (α signals) is 
presented, which corresponds to the archetypals 

shown in Figure 8 and 9. These signals are shown in 
Figure 16 and 17. 
 
From a spectral point of view these signals behave 
like white noise.  
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Figure 15 - Power spectral density of the noise 
signal computed using a Classic method and MEM. 
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Figure 16 - α signal corresponding to archetypal I. 
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Figure 17 - α signal corresponding to archetypal II. 
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Figure 17 - α signal corresponding to archetypal II. 



The noise spectrum in ECG
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Figure 12 - Original and "clean" beats. 
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Figure 17 - α signal corresponding to archetypal II. 

Power spectral density of ECG noise



Example: ECG beat spectrum
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Figure 12 - Original and "clean" beats. 
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Figure 17 - α signal corresponding to archetypal II. 



Example: supercapacitor
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Example: supercapacitor
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H(s) = 7.39 ×10−3 + 3.24×10−3

sb
+ 7.68×10−3

sa
+ 3.37×10−3

sa+b



Spectrum of the monthly average 
temperatures of Lisbon (1881-2011)
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Dow Jones average index (FT)
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Fourier transform of the signal for 
the Human chromosome 1 
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Music spectrum
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The spectrum of EEG
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Impedance of vegetables



Permitivity of a melon



The fractor  

Z(s) = 
K
sα  



Electrical networks



Infinite Transmission line.

Equivalent impedance ba ZZZ =

when RZ a = and
SC

Zb

1=

2
1−= S

C

R
Z (Fractional order system)
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Warburg Impedance C dl

R ct

Equivalent circuit of impedance behaviour of a 
capacitive device immersed in a polarizable medium 
(e.g. water).

W: Warburg impedance 

:Half order system.

Diffusion of ions through a porous medium also 
results in fractional behaviour.

1/ 2W Qs−=

30



Viscoelasticity

E
C E

C f

Kelvin-Voigt 
model

Fractional Kelvin-Voigt 
model

( ) ( )
d

t E C t
dt

σ ε� �= +� �� �
( ) ( )f

d
t E C t

dt

α

ασ ε
� �

= +� �
� �

Integer order 
model

Fractional order model
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fBm – conventional formulation 

BH(t)-H(0)=
1

Γ(H+1/2)
 









⌡⌠
-∞

0

 [ ](t-τ)
H-1/2

 - (-τ)
H-1/2

 w(τ)dτ  +  

+ 
1

Γ(H+1/2)
 









 + ⌡⌠
0

t

  (t-τ)
H-1/2

 w(τ)dτ  

 



33

fBm – general case

BH(t)-BH(0) = ⌡⌠
0

t

  D
α
 w(τ) dτ  

For all the fractional derivatives 
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chemotaxis behavior 
Sample variances 
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Returning to the ECG



ECG - HRV



Log-log plot of the HRV power spectrum over 24 hours. The region between 0.01 and 
0.0001 Hz is used to calculate power law slope. (x-axis: frequency Hz)

ECG – HRV spectrum



short-term fractal scaling exponent (1995)

Examples of the power law slope in a) a patient with cardiac disease. 
And b) a healthy person.

ECG – HRV spectrum



The Laplace Transform(s)

One-sided LT: ⇒  F(s) = ⌡⌠
0

∞
  f(t) e-st dt 

  LT[f(α)
(t))] = sα

F(s)  - ∑
i=0

n-1
 [Dα-1-i

 f(0+)].si 

 40



The Laplace Transform(s)

Two-sided LT: ⇒  F(s) = ⌡⌠
-∞

∞
  f(t) e-st dt 

  LT[f(α)
(t))] = sα

F(s)   
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Fractional derivatives

Riemann-Liouville   Caputo 

Riesz     Weyl 

Hadamard       Grünwald-Letnikov 

Marchaud … 

ARE THEY EQUIVALENT? 

42



 Definition 

Liouville integral 

α>0 D-αϕ(t)= 
1

(-1)αΓ(α) ⌡⌠
0

+∞
 ϕ(t+τ)τα-1dτ         

 

Riemann integral  

α>0 

D
-α
 ϕ(t)=

1
Γ(α) ⌡

⌠

0

t

 
ϕ(τ)

(t-τ)1-αdτ  

 

Hadamard integral  D
-α
 (t)=

tα

Γ(α) ⌡⌠
0

1
 ϕ(tτ).(1-τ)α-1dτ 

Riemann-Liouville integral 

D
-α
 ϕ(t)=

1
Γ(α) ⌡

⌠

a

t

 
ϕ(τ)

(t-τ)1-αdτ   α>0 

Backward Riemann-Liouville integral 

D
-α
 ϕ(t)=

1
Γ(α) ⌡

⌠

t

b

 
ϕ(τ)

(t-τ)1-αdτ  α>0 

Generalised function 

(Cauchy) D
-α
 ϕ(t)= 

1
Γ(α) ⌡⌠

-∞

t
 ϕ(τ).(t-τ)α-1 dτ  

 

Fractional Integral 



 Definition 

 

Left side Riemann-Liouville derivative D
α
 ϕ(t)=

1
Γ(n-α)

dn

dtn ⌡⌠

a

t
 ϕ(τ).(t-τ)α-n-1dτ t>a  

 

Right side Riemann-Liouville derivative D
α
 ϕ(t)=

(-1)n

Γ(n-α)
dn

dtn ⌡⌠

t

b
ϕ(τ).(τ-t)α-n-1dτ t<b 

 

 

Left side Caputo derivative 

D
α
 ϕ(t)=

1
Γ(-ν)











⌡⌠

0

t
ϕ(n)(τ).(t-τ)ν-1 dτ  t>0 

 

 

Right side Caputo derivative 

D
α
 ϕ(t)=

1
Γ(-ν)











⌡⌠

t

+∞
ϕ(n)(τ).(τ-t)ν-1 dτ  

 

Generalised function 

(Cauchy) 

D
α
 ϕ(t)= 

1
Γ(-α) ⌡⌠

-∞

t
 ϕ(τ).(t-τ)-α-1 dτ  

 

Fractional Derivative 



Going into the derivative (1)

f
(1)
+  (t) = lim

h→0
 
f(t) −  f(t-h)

h
           f

(1)
-  (t) = lim

h→ 0
 
f(t + h) −  f(t)

h
  

                            f(1)0  (t) = lim
h→ 0

 
f(t + h/2) −  f(t - h/2)

h
  

ARE THEY EQUIVALENT? 
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Going into the derivative (2)

f
(1)
+  (t) = lim

h→0
 
f(t) − f(t-h)

h
             f

(1)
-  (t) = lim

h→0
 
f(t + h) − f(t)

h
  

 

       s  = 
lim

h→0 
 (1 - e-sh)

h
                          = 

lim
h→0

(esh - 1) 
h

  

What happens when |s| goes to infinite? 46



Going into the derivative (3)

f
(2)
+  (t)= lim

h→0
 
f(1)(t) − f(1)(t-h)

h   = 

= lim
h→0

 

lim
h→0

 
f(t) − f(t-h)

h  − lim
h→0

 
f(t-h) − f(t-2h)

h

h  

= lim
h→0

 

lim
h→0

 
f(t) − 2f(t-h)+ f(t-2h)

h

h  = lim
h→0

 
f(t) − 2f(t-h)+ f(t-2h)

h2   
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Going into the derivative (4)

f
(2)
+  (t)= lim

h→0
 
f(t) − 2f(t-h) + f(t-2h)

h2    ⇒  s2  = 
lim

h→0 
 (1 - e-sh)2

h2   

f
(2)
-  (t)= lim

h→0
 
f(t+2h) − 2f(t-h) + f(t)

h2   ⇒  s2 = 
lim

h→0+
(esh - 1)2 

h2           
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Going into the derivative (5)

f
(N)
+  (t) = lim

h→0
 

∑
k=0

N
  (-1)

k
 



N

k
 f(t-kh)

h
N

       ⇒     sN  = 
lim

h→0 
 (1 - e-sh)N

hN   

f
(N)
-  (t) = lim

h→0

(-1)N ∑
k=0

N
  (-1)

k
 



N

k
 f(t+kh)

h
N

 ⇒  sN = 
lim

h→0
(esh - 1)N 

hN    

 They give the Nth derivative in 
ONE step 49



Going into the anti-
derivative (1)

f
 
+(t) = lim

h→0
 
f
(-1)
+ (t) - f

(-1)
+ (t-h)

h
  ⇒ f

(-1)
+ (t) = lim

h→0
 



hf

 
+(t) - f

(-1)
+ (t-h)    

         = lim
h→0

 



hf

 
+(t) + hf

 
+(t-h) - f

(-1)
+ (t-2h)   

f
(-1)
+  (t) = lim

h→0
 h ∑

k=0

∞
   f(t-kh)    ⇒     s-1  = 

lim
h→0 

h
 (1 - e-sh)

   Re(s) > 0  

f
(-1)
-  (t) = lim

h→0
 -h ∑

k=0

∞
  f(t+kh)  ⇒     s-1 = 

lim
h→0

 
h

(esh - 1)
    Re(s) < 0   

 
Essentially the Riemann integral 

definition! 50



Going into the anti-
derivative (2)

f
(-2)
+  (t) = lim

h→0
 h2 ∑

k=0

∞
   (k+1)f(t-kh)  ⇒  s-2  = 

lim
h→0 

h2

 (1 - e-sh)2
   Re(s) > 0  

f
(-2)
-  (t) = lim

h→0
 h2 ∑

k=0

∞
  (k+1)f(t+kh)  ⇒  s-2 = 

lim
h→0

 
h2

(esh - 1)2
    Re(s) < 0   

 

The repeated Riemann integral!
51



Joinning the derivative and 
anti-derivative transfer 

functions

s±N  = 
lim

h→0 
 (1 - e-sh)±N 

h±N    Re(s) > 0  

s±N = 
lim

h→0 
 (esh - 1)±N 

h±N     Re(s) < 0   
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Fractionalising the transfer 
function

sα=
lim

h→0+
 (1 - e-sh)α

hα  = 
lim

h→0+
(esh - 1) α 

hα   

     Re(s) > 0                    Re(s) < 0 

53

We must be careful with the branch 
cut lines due to the branch point at s=0



54

sα=
lim

h→0+
 (1 - e-sh)α

hα  = 
lim

h→0+
(esh - 1) α 

hα   

     Re(s) > 0                    Re(s) < 0 

The differintegrator



Generalisation of a well known property 
of the Laplace transform

TL[Dα
f f(t)] = sαF(s)   for Re(s) > 0   Forward 

 

TL[Dα
bf(t)] = sαF(s)   for Re(s) < 0   Backward 

 

There is a system – the differintegrator - that has  

sα
   as transfer function.      

55



Fractional Differintegrator 

• Inverse LT of sα for 
Real orders:
 

– Causal

– Anti-causal

LT-1[sα
  ] =  

t-α-1

(α-1)!
u(t) 

LT-1[sα
  ] = - 

t-α-1

(α-1)!
u(-t) 

56



Liouville differintegration

• Causal

• Anti-causal

x(α)
f (t) = 

1
Γ( α)⌡

⌠

-∞

t

 x(τ).(t-τ)-α-1
  dτ  

x(α)
b (t)  =  -

1
Γ( α)⌡

⌠

t

∞

 x(τ).(t-τ)-α-1
  dτ  

57



Grünwald-Letnikov fractional 
derivative 

sα
 

=
lim

h→0+

 (1 - e-sh)α
 

hα
 

 = 
lim

h→0+

(esh - 1) α
 

hα
 

  

     Re(s) > 0                    Re(s) < 0 

f
(α)
f (t)= lim

h→0+
 

∑
k=0

∞
  (-1)k 



α

k
 f(t-kh)

hα
                      forward 

backward          f
(α)
b (t) = lim

h→0+
 e-jαπ 

∑
k=0

∞
  (-1)k 



α

k
 f(t+kh)

hα   
58



Derivative of the exponential

If f(t) = est 

f
(α)
f  (t)=eat lim

h→0+ 

∑
k=0

∞
  (-1)k 


÷
α

k
e-kh

hα  = eat 
lim

h→0+ 

 (1 - e-ah)
α
 

h
α
 

   = s
α
   est    if  Re(s) > 0 

 

f
(α)
b (t)=eat lim

h→0+ (-1)
α 

∑
k=0

∞
  (-1)k 


÷
α

k
 ekh

hα  = eat lim
h→0+

(eah - 1)
α
 

h
α
 

   = s
α
   est  if Re(s) < 0 

 

59



Forward derivative of the sinusoid 

f(t) = ejωt
    ω > 0 ⇒ f(α)

f  (t) = (jω)α  ejωt
    

Then 

Dα
 cos(ωt)  =  

= D
α
 [ejωt

 +e-jωt
 ]/2=1/2(jω)α ejωt

    + 1/2(-jω)α e-jωt
    = 

                     = ωα
  cos(ωt + απ/2) 

and, similarly 

Dα
 sin(ωt)  = ωα

  sin(ωt + απ/2) 

 What about the backward?



Going into the derivative 
(1)

f(1)0  (t) = lim
h→0

 
f(t + h/2) − f(t - h/2)

h
  

LESS USED 



Going into the derivative 
(2)

f
(1)
0  (t) = lim

h→0
 
f(t+h/2) − f(t-h/2)

h
  

⇓ 

s  = 
lim

h→0 
 (esh - e-sh)

h
  



Going into the derivative 
(3)

f
(2)
0  (t)= lim

h→0
 
f
(1)
 (t+h/2) − f

(1)
 (t-h/2)

h
  = 

=lim
h→0

 

lim
h→0

 
f(t+h) − f(t)

h
 − lim

h→0
 
f(t) − f(t-h)

h

h
  

=lim
h→0

 

lim
h→0

 
f(t+h) − 2f(t)+ f(t-h)

h

h
 = lim

h→0
 
f(t+h) − 2f(t)+ f(t-h)

h2   

        



Going into the derivative 
(4)

f
(2)
0  (t)=lim

h→0
 
f(t+h) − 2f(t) + f(t-h)

h2    ⇒   s2  = 
lim

h→0 
 (esh - e-sh)2

h2   



Going into the derivative 
(5)

f
(N)
0  (t) = lim

h→0
 

(-1)
N/2

∑
k = -N/2

N/2
 (-1)

k
 

Γ(N+1)
Γ(N/2+k+1) Γ(N/2-k+1)

 f(t - kh)

h
N

  even N     

 = lim
h→0

 

(-1)
(N+1)/2

∑
k = -(N-1)/2

(N+1)/2
 (−1)

k
 Γ(N+1)
Γ((N+1)/2-k+1) Γ((N-1)/2+k+1)

 f(t − kh+h/2)

h
N     

odd N   ⇒     sN  = 
lim

h→0 
 (esh - e-sh)N

hN   



Fractionalising the transfer 
function

sα
 

  = 
lim

h→0 

 (esh - e-sh) α 

hα
 

  

     Which is the region of convergence? 
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Central Derivatives

• Type 1

• Type 2

Dα
c1

f(t) = lim
h→0

Γ(α+1)

hα
 

 ∑
-∞

+∞
  

(-1)k

Γ(α/2-k+1) Γ(α/2+k+1)
f(t-kh) 

D
α
c2

 f(t) = limh→0
Γ(α+1)

hα
 

 ∑
-∞

+∞
  

(-1)k

Γ[(α+1)/2-k+1] Γ[(α-1)/2+k+1]
 f(t-kh+h/2) 
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Riesz Potentials

limh→0
Γ(α+1)

hα  ∑
-∞

+∞
  

(-1)k

Γ[(α+1)/2-k+1] Γ[(α-1)/2+k+1]
 f(t-kh+h/2) = 

       = 
1

2Γ(-α) cos(απ/2)
 ⌡

⌠

-∞

 ∞
  f(z-x)

1
|x|α+1 dx       

 

limh→0
Γ(α+1)

hα  ∑
-∞

+∞
  

(-1)k

Γ[(α+1)/2-k+1] Γ[(α-1)/2+k+1]
 f(t-kh+h/2) = 

     = - 
1

2Γ(-α)sin(απ/2)
 ⌡⌠
-∞

 ∞
  f(z-x)

sgn(x)
|x|α+1  dx  



Main areas for research
1) Fractional control of engineering systems, 
2) Fundamental explorations of the mechanical, electrical, and 

thermal constitutive relations and other properties of various 
engineering materials such as viscoelastic polymers, foam, gel, and 
animal tissues, and their engineering and scientific applications,

3) Advancement of Calculus of Variations and Optimal Control to 
fractional dynamic systems,

4) Fundamental understanding of wave and diffusion phenomenon, 
their measurements and verifications,

5) Analytical and numerical tools and techniques, 
6) Bioengineering and biomedical applications, 
7) Thermal modeling of engineering systems such as brakes and 

machine tools, 
8) Image and signal processing.
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Where do we go to?
•EVERYWHERE

Fractional Calculus: 

 the Calculus for the XXIth century 

(Nishimoto) 

Fractional Systems:  
The XXIth Century Systems 
(mdo) 
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•The International Conference on Fractional 
Signals and Systems 2013

October 2013

Ghent, Belgium 

http://www.fss13.ugent.be/
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