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Introduction
I Control and eradication of infectious diseases are

important public health goals.

I The global eradication of smallpox has been achieved.

I It is difficult to accomplish, and remains a goal for polio,
malaria, childhood diseases, etc.

I There are other extinction processes besides global
disease eradication.

I A disease may become locally extinct, but can be
reintroduced-measles in Thailand.

I Extinction of individual strains of multi-strain diseases -
influenza and dengue fever.

I Extinction of species.

Dynamical Systems Applied to Biology and Natural Sciences, February, 2013 Disease Extinction as a Dynamical System 3/44



Example of Epidemic Extinction - SIR
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Data courtesy of D. Cummings
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Example of Epidemic Extinction - Multi-strain Disease
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Four strain model (Dengue Fever with antibody dependent enhancement)
Population size is 100 million

Only one strain (blue) goes extinct Figure courtesy of S. Bianco
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Example of Epidemic Extinction - Dengue Fever Data
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Data showing incidence (per 1000 individuals) of Dengue Fever for Chiang Mai
province, Thailand.

Data courtesy of D. Cummings
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Problem and Objective
I Extinction of an epidemic is assumed to be rare event that

occurs due to a large, rare stochastic fluctuation.

I The problem is to find the most likely trajectory in state space to
extinction (the optimal path).

I Equivalent to maximizing local sensitive dependence to
initial data

I Show that the path which maximizes the probability to extinction
(optimal path) also has a finite-time Lyapunov exponent (FTLE)
that attains its local maximum on the optimal path.

I Therefore, we can use the geometry of the FTLE as a
constructive tool to evolve naturally toward the optimal path.

1. Verdasca et al, J. Theor. Bio. 233, 553 (2005)
2. Keeling, Ecology, Genetics, and evolution , Elsevier,
2004.
3. West et al, Math. Biosc., 141, 29 (1997)

4. Cummings et al, PNAS 102, 10259 (2005)
5. Jacquez et al, Math. Biosc., 163, 77, (2000)
6. Allen et al, Math. Biosc. 163, 1 (2000)
7. Doering et al, Multiscale Mod. 3, 283 (2005)
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Optimal Path for Stochastic SIR

β = 1500, γ = 100,R0 ≈ 15

Color bar is a pre-history histogram of
2000 runs that go extinct.

An iterative action minimizing method for computing optimal paths in stochastic dynamical systems

BS Lindley, IB Schwartz - arXiv preprint arXiv:1210.5153, 2012 - arxiv.org
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Outline
I Optimal path to extinction.

I Theory developed using example of a branching -
annihilation process.

I Analytical results.

I Optimal path and sensitive dependence to initial conditions.
I Ideas developed using example of simple pendulum.
I Quantifying sensitive dependence using FTLE.

I Return to example of branching-annihilation process.

I A second example (SIS/SIR epidemic models).

I Control using treatment in SIS model

I Conclusions and future work.
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Stochastic Branching-Annihilation Process-
An Example

A λ−→ 2A and 2A
µ−→ ∅

branching annihilation

λ, µ > 0 are the reaction rates.

This is a single species process that can be thought of as a
simplified model of population growth.

Illustrates the role of the optimal path to extinction in large
fluctuations of a stochastic population, and more generally, in
stochastic systems far from equilibrium.
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Stochastic Branching-Annihilation Process

The deterministic (mean-field) rate equation is given by

Ẋ = λX − µX2

There are two fixed points:

A repelling, zero-population (extinct) state at XS = 0

An attracting, non-trivial (endemic) state at XA = λ/µ
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Master Equation for A λ−→ 2A, 2A
µ−→ ∅

The deterministic picture misses the fact that the true,
asymptotic state of the stochastic system is the zero-population
(extinct) state.

Stochastic effects occur as a result of random interactions.

Transition rates:
W(X,−1) = µX2 Annihilation
W(X,+1) = λX Creation

Assaf, Meerson PRE 70,041106 (2008)

Elgart, Kamenev, PRE 78, 041123 (2004)

Dynamical Systems Applied to Biology and Natural Sciences, February, 2013 Disease Extinction as a Dynamical System 12/44



Solving the General Master Equation (ME)
XεRm are individual numbers of population

Transitions occur as X → X + r at rate W(X, r)

Mean field equations (N →∞)

dX
dt

=
∑

r
rW(X, r) (1)

Probability evolves according to master equation

ρ̇(X, t) =
∑

r

[W(X− r; r)ρ(X− r, t)−W(X; r)ρ(X, t)]
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Eikonal Approximation to the Master Equation
Assumptions: Large population limit N >> 1 ∗

Density ρ(X) has central peak at endemic XA of width αN1/2

Density of ME is approximated as the exponential of a function,
s(x) called the action:

ρ(X) α exp(−Ns(x)), p = ∂s/∂x
ρ(X + r) ≈ ρ(X)exp(−ptr), X � r

∂s
∂t

= −H(x, ∂s/∂x), Hamilton− Jacobi Equation

with Hamiltonian as a function of population fraction x and
conjugate momenta p :

H(x, p) =
∑

r

w(x, r)(eptr − 1)

∗ Gang, PRA 36 5782 (1987)

Dykman et al, J. Chem. Phys. 100, 5735 (1994).

Elgart et al PRE, 70 041106 (2004)

Dykman, Landsman, Schwartz PRL, 101 078101
(2008)
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Hamiltonian for A λ−→ 2A, 2A
µ−→ ∅

Using a Legendre transformation∗, we have

H(q, p) =
(
λ(1 + p)− µ

2
(2 + p)q

)
qp

q̇ =
∂H
∂p

= q[λ(1 + 2p)− µ(1 + p)q],

ṗ =− ∂H
∂q

= p[µ(2 + p)q− λ(1 + p)]

q is a coordinate, while p is a conjugate momentum.

Since H is independent of time, it is conserved: H = E = const.

We consider zero-energy orbits, so that H = E = 0.
∗Gang, PRA 36 5782 (1987)
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Steady States of Hamiltonian Flow
Zero fluctuations correspond to momentum p = 0 and the
dynamics are described by

q̇ = λq− µq2

with attracting fixed point q = λ/µ

and repelling fixed point q = 0.

There are three zero-energy fixed points of the Hamiltonian flow:

h1 =(q, p) = (λ/µ, 0)

h0 =(q, p) = (0, 0)

h2 =(q, p) = (0,−1)

deterministic, endemic state
deterministic, zero-population state

fluctuational, zero-population state

All three points are hyperbolic (saddles) in 2d.
Extinction requires fluctuational orbits with non-zero
momentum.(Absorbing state)
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Geometry of the Optimal Path
Three zero-energy curves given as:

p = 0, q = 0, and q =
2λ(1 + p)

µ(2 + p)
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The path from the endemic state to extinction must leave point h1 and reach the
extinction line q = 0.

Of all such trajectories, the optimal path reaches q = 0 at point h2 and describes the

most probable sequence of events which evolves the system to extinction.
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Outline
I Optimal path to extinction.

I Theory developed using example of a branching -
annihilation process.

I Analytical results.

I Optimal path and sensitive dependence to initial conditions.
I Tutorial using example of simple pendulum.
I Quantifying sensitive dependence using FTLE.

I Return to example of branching-annihilation process.

I A second example (SIS/SIR epidemic models).

I Control using treatment in SIS model

I Conclusions and future work.
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Optimal Path and Sensitive Dependence to IC
The optimal path is a heteroclinic orbit that connects two saddles
(endemic state to extinct state).

Dynamically, the heteroclinic orbit (optimal path) exhibits
maximal sensitivity to initial conditions.
We quantify the sensitive dependence to initial conditions by
computing finite-time Lyapunov exponents (FTLE).
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Example - Simple Pendulum
θ̈ + sin θ = 0

Write as ẋ = f (x) with x = (θ, v);

θ̇ = v,
v̇ = − sin θ

Look at trajectories in phase space.
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FTLE for Simple Pendulum

Forward FTLE Backward FTLE

Attracting structures when one integrates forward in time.

Repelling structures when one integrates backwards in time.
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FTLE for Simple Pendulum
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The “ridges” of maximal FTLE values (coherent structures)
correspond to the invariant manifolds.
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How to Compute FTLE

Consider a vector field v defined over the time interval I = [ti, tf ].

Trajectories satisfy: ẋ(t; ti, x0) = v(x(t; ti, x0), t),

x(ti; ti, x0) = x0

Integration of the system from ti → ti + T yields the flow map:

φti+T
ti : x0 7→ φti+T

ti (x0) = x(ti + T; ti, x0)

Consider a perturbed point y = x + δx(0). After time T:

δx(T) = φti+T
ti (y)− φti+T

ti (x) =
dφti+T

ti (x)

dx
δx(0) +O(||δx(0)||2)
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How to Compute FTLE
Magnitude of the perturbation is:

||δx(T)|| =

√√√√〈
dφti+T

ti (x)
dx

δx(0),
dφti+T

ti (x)
dx

δx(0)

〉
=

√√√√〈
δx(0),

dφti+T
ti (x)
dx

∗
dφti+T

ti (x)
dx

δx(0)

〉

Maximum stretching from max eigenvalue of deformation matrix.

max
δx(0)
||δx(T)|| =

√
λmax(∆)||δ̄x(0)|| = exp (σT

ti (x)|T|) · ||δ̄x(0)||

The (largest) finite-time Lyapunov exponent is therefore:

σT
ti (x) =

1
|T|

ln
√
λmax(∆)
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Outline
I Optimal path to extinction.

I Theory developed using example of a branching -
annihilation process.

I Analytical results.

I Optimal path and sensitive dependence to initial conditions.
I Ideas developed using example of simple pendulum.
I Quantifying sensitive dependence using FTLE.

I Return to example of branching-annihilation process.

I A second example (SIS/SIR epidemic models).

I Control using treatment in SIS model

I Conclusions and future work.
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Back to Branching-Annihilation Problem

Three zero-energy curves given as:

p = 0, q = 0, and q =
2λ(1 + p)

µ(2 + p)
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FTLE for Branching-Annihilation Problem

Color bar depicts the
FTLE values
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SIS Epidemic Model
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Assume constant population so that S + I = N

İ = −(µ+ γ)I + βI(1− I)/N, R0 = β/(µ+ γ)
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Hamiltonian for Stochastic SIS

The Hamiltonian is

H(I, p) = (µ+ γ)I(e−p − 1) + (β/N)I(1− I)(ep − 1)

Hamilton’s equations are

İ =
∂H
∂p

= −(µ+ γ)Ie−p + (β/N)I(1− I)ep,

ṗ =− ∂H
∂I

= −(µ+ γ)(e−p − 1) + (β/N)(ep − 1)(2I − 1)

Dynamical Systems Applied to Biology and Natural Sciences, February, 2013 Disease Extinction as a Dynamical System 29/44



Optimal Path for Stochastic SIS-1-D model

Color bar values
of FTLE at each
point.

Optimal path to
extinction lies
along a maximal
ridge of the
FTLE.

When p = 0, the system follows its deterministic path (no
fluctuations)
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Optimal Path for Stochastic SIS-2-D model

1

1Monte Carlo simulations courtesy of L. Billings.
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Outline
I Optimal path to extinction.

I Theory developed using example of a branching -
annihilation process.

I Analytical results.

I Optimal path and sensitive dependence to initial conditions.
I Ideas developed using example of simple pendulum.
I Quantifying sensitive dependence using FTLE.

I Return to example of branching-annihilation process.

I A second example (SIS/SIR epidemic models).

I Control using treatment in SIS model

I Conclusions and future work.
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Treatment model - scaled treatment gX2
Infectives receive treatment =⇒ group removal.

Approximate susceptibles S = N − I using the mean population size N.

Consider the dynamics in the one-dimensional state X = I = X2.

Remove a percentage of the infectives (gx2) at frequency (ν).

Transition rates for stochastic control:
W
(
X2;−1

)
= (µ+ κ)X2, removal by death or recovery

W
(
X2; 1

)
= βX2(N − X2)/N, infection event

W
(
X2;−gX2

)
= ν, treatment

(2)

Let:

τ = t/(µ+ κ) (time) q = X2/N. (infective fraction)

R0 = β/(µ+ κ) (spread rate) ω = ν/(µ+ κ) (Normalized
treatment frequency).

Hamiltonian:

H(q, p) = R0q(1− q)(ep − 1) + q(e−p − 1) + ω
N (e−gNqp − 1)
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Treatment model - Higher order approximation
Assuming g� 1, the optimal path to extinction:

pa(q) = − ln(R0(1− q))

(
1− ωg

R0(1− q)− 1

)
+O(g2)

The higher order terms in the approximation of the probability
distribution:

ρ(X, t) = exp(−NS(x)) = exp(−NS(q)− S1(q)− ...),

We can approx S1(q) by∗

S1(q) =

∫ q

q1

Hqp(ξ, pa) + 1
2 Hpp(ξ, pa)− ω

N (e−gNξpa − 1)

Hp(ξ, pa)
dξ

∗Escudero and Kamenev, Phys. Rev. E, 79 (2009); Assaf and Meerson,
Phys. Rev. E, 81 (2010).
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Treatment model-Enhanced mean time to extinction
Mean time to extinction with pre-factor∗

τ = KeN[S(0)−S(q1)]+(φ(0)−φ(q1))

for φ(q) = S1(q)− ln q and K =
( 1

R0−1 )
√

2π

(µ+κ)(
R0−1−ωg

R0
)
√

N ln(1+ωg)R0
ωg

Parameters: β = 104, µ = 0.2, and κ = 100.
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∗Assaf and Meerson, Phys. Rev. E, 81 (2010).
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Treatment control-Relaxing the fixed population
assumption
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The action 2D SIS model as a function of R0 and treatment fraction g.
Population fluctuates.
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Comparing periodic and random treatment
effectiveness

Parameters: N = 8,000, R0 = 1.05

Mean time to disease
extinction
Random treatment
(dotted lines)
Periodic treatment
(symbols)

Random schedule had a faster mean time to extinction over the range
of frequencies
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Conclusions
I Extinction occurs when fluctuations due to random transitions act as an

effective force to drive one or more components or species to vanish.
I We have shown that even though the extinction process is random, it

follows an optimal path which:
I (1) maximizes the probability to extinction, and
I (2) is equivalent to the dynamical systems idea of having

maximum sensitive dependence to IC.
I The relation between sensitive dependence and the path to extinction

allows one to evolve naturally toward the optimal path using FTLE.
I Showed how random controls enhance the time to extinction in simple

stochastic models.

I One and two dimensional models possess different scalings as
functions of R0 and gν.
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Future Work
I Apply method to

higher-dimensional
models, such as SIR and
multi-strain models.

I Devise improved control
methods which promote
disease extinction.

I Extend to non-Markovian
dynamical systems
Stochastic differential
delay equations
State dependent
stochastic delay equations
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Sketch of Proof of Equivalence
Consider the n-dimensional Langevin problem with vector field V(x)

with additve noise. Eikonal equations of motion and Hamiltonian are:

ẋ = p + V(x)

ṗ = −V′(x)p

H(x, p) =
‖p‖2

2
+ p · V(x)

Optimal path lies along the H(x, p) = 0 surface

C(x,p) = {t ∈ (−∞,∞) | p(t) = −2V(x(t))} ,

Local geometry assumptions:

V(x) is smooth,

V(xa) = V(xs) = 0,

V′(xa) has eigenvalues with negative real parts, and V′(xs) has
at least one eigenvalue with positive real part.
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Sketch of Proof of Equivalence (Cont’d)
Assume that the optimal path has a direction on H(x(t), p(t)) = 0:

lim
t→+∞

(x(t), p(t)) = (xs, 0),

lim
t→−∞

(x(t), p(t)) = (xa, 0).

Shift optimal path to the origin by using the 2n-dimensional
transformation:

u = x,
w = p + 2V(x),

Ĥ(u,w) = ‖w‖2

2 − w · V(u).

The new equations of motion are now:

u̇ = ∂Ĥ/∂w = w− V(u),

ẇ = −∂Ĥ/∂u = V′(u)w.

The optimal path now is described by the curve

C(u,w) = {t ∈ (−∞,∞) |w(t) = 0, u̇(t) = −V(u(t))} ,
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Sketch of Proof of Equivalence (Cont’d)

Linearized variation along the optimal path C(u,w):

Ẋ =

[
−V′(u(t)) In

0 V′(u(t))

]
X ≡ J(u(t), 0)X, X(0) = I. (3)

The eigenvalues of J(u0, 0) are given by {±λi}n
i=1, where λi are

eigenvalues of V′(u0).
Diagonalizing and ordering the eigenvalues, the solution about
(u,w) = (u0, 0) for 0 < t� 1 is X(t) u exp (tJ(u0, 0)).
For any initial value, x0, the solution is

xp(t; x0) = (x1(t), x2(t), · · · , x2n(t))

= (eλmaxtx10, eλ2tx20, · · · , eλntxn0

e−λntx(n+1)0, · · · , e−λ2tx(2n−1)0, e−λmaxtx2n0).

Here λmax > 0 dominates the eigenvalues.
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Sketch of Proof of Equivalence (Cont’d)
Apply FTLE definition on 2n-dimensional hypercube D = [−1, 1]2n:
If the initial condition lies within a distance δ of the unstable manifold
with 0 < δ << 1, then the time to escape from the domain for an
arbitrary non-zero initial condition is given by

tf u −
log (δ)

λmax
.

Using the definition of the FTLE given by :

σ(tf ; x0) =
1
tf

ln (||xp(tf ; x0 + ε)− xp(tf ; x0)||),

Since |λmax| >> |λi|, and since ±λmax dominates the expanding and
contracting directions,

∂σ(tf ; x0(δ))

∂δ
≈
λmax ln

(
ε2

1

)
2δ (ln δ)2

(
1 +

δ4ε2
2n

ε2
1

)
,

which can be shown to be negative assuming ε1 << 1.
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