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Figure 1:

Comparison between maximum likelihood method and Bayesian
approach for a simple linear infection model, with all analytical
tools available.

Abstract
We revisit the parameter estimation framework for population
biological dynamical systems, and apply it to calibrate various
models in epidemiology with empirical time series, namely in-
fluenza and dengue fever. When it comes to more complex mod-
els like multi-strain dynamics to describe the virus-host inter-
action in dengue fever, even most recently developed parameter
estimation techniques, like maximum likelihood iterated filter-
ing, come to their computational limits. However, the first re-
sults of parameter estimation with data on dengue fever from
Thailand indicate a subtle interplay between stochasticity and
deterministic skeleton. The deterministic system on its own al-
ready displays complex dynamics up to deterministic chaos and
coexistence of multiple attractors.
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Figure 2:

Application of numerical likelihood estimation of infection rate and initial
number of susceptibles on influenza data from InfluenzaNet, an internet
based surveillance system (EPIWORK project).

1 Introduction

A major contribution to stochasticicty in empirical epidemiological data
is population noise which is modelled by time continuous Markov pro-
cesses or master equations. In some cases the master equation can be
analytically solved and from the solution a likelihood function be given.
The likelihood function gives best estimates via maximisation or can be
used in the Bayesian framework to calculate the posterior distribution
of parameters.
Here we start with an example of a linear infection model which can be
solved analytically in all aspects and then generalize to more complex
epidemiological models which are relevant for the description of e.g.
influenza or dengue fever, on the cost of having to perform more and
more steps by simulation to obtain the likelihood function by complete
enumeration or even just to search for the maximum in extremecases.
Recent applications to a multi-strain model applied to empirical data
sets of dengue fever in Thailand, where the model displays such com-
plex dynamics as deterministic chaos in wide parameter regions, stretch
the presently available methods of parameter estimation well to its lim-
its. Finally, the analysis of scaling of solely population noise indicates
that very large world regions have to be considered in data analysis in
order to be able to compare the fluctuations of the stochasticsystem
with the much easier to analyze deterministic skeleton.

2 An analytically solvable case
The simplest epidemiological model, the SI system, where infection
is only aquired from the outside, leads to a master equation which is
not only linear in probability but also in the state variables, leading to
a linear mean field approximation for the dynamics of the expectation
values [1]. Though very simple in its set-up, it can be applied to real
world data of influenza in certain stages of the underlying SIR model,
when considering the cumulative number of infected cases during the
outbreak [2],
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which can besolved using the characteristic function
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3 Solving the master equation
For suitable initial conditions the master equation can be solved to ob-
tain the transition probabilites needed to construct the likelihood func-
tion. The dynamics of the characteristic function, obtained from the
master equation is
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usingβ∗ := (β/N)I∗, and initial conditionp(I, t0) = δI,I0
,

henceg(κ, t0) = eiκI0 , with solution

g(κ, t) = eiκN
“

e−iκe−β∗(t−t0)+(1−e−β∗(t−t0))
”N−I0

see Fig. 3 a). Then Fourier back transformation gives the transition
probabilityp(I, t|I0, t0) explicitly as solution of the master equa-
tion.

4 Likelihood function from
master equation

From the transitions probabilities we can construct the likelihood
function, i.e. the joint probability to find all data point from
our empirical time series interpreted as a function of the model
parameters

p(In, tn, In−1, tn−1, ..., I0, t0)

=
Qn−1

ν=0 p(Iν+1, tν+1|Iν , tν)·p(I0, t0) =: L(β)

as shown in Fig. 3 b) for the likelihood function and its maxi-
mum as best estimator̂β for the parameterβ.
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Figure 3:
a) An example of the characteristic function with fixed∆t given
by the sampling rate of the time series. b) From the character-
istic function we can obtain the solution of the stochastic model
and with it the likelihood function, as shown here with its best
estimate of the model parameter as maximum.

5 Bayesian framework
The Bayesian framework starts by using the likelihood func-
tion L(β) = p(I|β) with I = (I0, I1, ...In) and con-
structs from it the probability of the parameters conditioned on
the present data, here from the time series of the epidemic sys-
tem, the Bayesian posteriorp(β|I). This can be only achieved
by imposing a priorp(β), a probability of plausible parameter
sets, hence we have

p(β|I) =
p(I|β)

p(I)
p(β) .

For the linear infcetion model all steps can still be performed
analytically. The posterior is given explicitly by

p(β|I) =
Γ(ã+ b̃)

Γ(ã) Γ(b̃)
·e
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with hyperparameters̃a = a+
Pn−1

ν=0 (Iν+1−Iν ) and

b̃ = b+
Pn−1

ν=0 (N −Iν+1) from the prior parametersa
andb. Fig. 1 shows the comparison of a histogram of best es-
timates from many realizations of the stochastic process (red),
an information which is not given sufficiently in most empirical
systems, often we only have a single realization, and the results
from the parameter estimation, a Gaussian approximation from
the best estimate and the Fisher information (green), and finally
the Bayesian posterior (black) obtained from a conjugate prior
(blue), which is here nicely broad, not imposing much restric-
tion to the considered parameter values.

6 Numerical likelihood via
stochastic simulations

In cases in which not all steps or even no step can be performed
analytically, a comparison of stochastic simulations, depending
on the model parameters, with the empirical data is the only
available information on the parameters. In Fig. 2 an SIR model
is fitted to empirical data from influenza, here due to the relative
simplicity of the stochastic model, still a numerical enumeration
of the whole relevant parameter space is computationally pos-
sible (equivalent to a flat but cut-off prior. In more complicated
models, e.g. dengue fever models and data, even a complete enu-
meration of the parameter space is not computationally possible,
though only six parameters and nine initial conditions haveto be
estimated. Particle filtering, i.e. an often quite restricted distribu-
tion of parameters and initial conditions, a hard prior in Bayesian
language, is stochastically integrated and compared to theempir-
ical time series, selecting the best performers as maximum of the
likelihood function.

7 Application to more

complex models
In such cases, in which the model can display deterministic chaos,
like the one in dengue we investigate [3, 4], the short term pre-
dictability and long term unpredictability (as measured bythe
largest Lyapunov exponent) even prohibits the comparison of
stochastic simulations with the entire time series. Hence itera-
tively short parts of the time series are compared with the stochas-
tic particles, and via simulated annealing the variabilityof the
particles is cooled down, priors narrowed in Bayesian language.
The final method is called ”maximum likelihood iterated filter-
ing” (MIF). We apply this method to dengue data from Thailand,
and display here bifurcation diagrams obtained from the best esti-
mates, see Fig. 4, extrapolating finally to larger population sizes,
see Fig. 5.
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Figure 4:
Comparison of deteministic skeleton and stochastic simulations
for bifurcation diagrams with estimated parameters for a) dengue
in Chiang Mai province and b) dengue in the surrounding nine
northern provinces of Thailand. The crucial parameter is the im-
port ̺. Even in systems with population sizes well above one
million the noise level of the stochastic system is enormous.
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Figure 5:
Extrapolation of population sizes to a) whole Thailand and b)
Thailand and surrounding countries with ca. 200 mio. inhabi-
tants. The noise level of the stochastic simulation approaches the
deterministic system only for very large system sizes.
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