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Figure 1:

Comparison between maximum likelihood method and Bayesian
approach for a simple linear infection model, with all aniaiy

tools available.

1 Introduction

A major contribution to stochasticicty in empirical epidiefogical data
is population noise which is modelled by time continuous kéarpro-
cesses or master equations. In some cases the master equatibe
analytically solved and from the solution a likelihood ftina be given.
The likelihood function gives best estimates via maxiniisabr can be
used in the Bayesian framework to calculate the postergiribution
of parameters.

Here we start with an example of a linear infection model \tuan be
solved analytically in all aspects and then generalize toencomplex
epidemiological models which are relevant for the desimipof e.g.
influenza or dengue fever, on the cost of having to performenaord
more steps by simulation to obtain the likelihood functigncomplete
enumeration or even just to search for the maximum in extreases.
Recent applications to a multi-strain model applied to eivgi data
sets of dengue fever in Thailand, where the model displagls sum-
plex dynamics as deterministic chaos in wide parameteonsgstretch
the presently available methods of parameter estimatidirtoviés lim-
its. Finally, the analysis of scaling of solely populatioise indicates
that very large world regions have to be considered in daddysis in
order to be able to compare the fluctuations of the stochagsitem
with the much easier to analyze deterministic skeleton.

2 An analytically solvable case

The simplest epidemiological model, the SI system, whefection
is only aquired from the outside, leads to a master equatiochwis
not only linear in probability but also in the state variahleeading to
a linear mean field approximation for the dynamics of the etqieon
values [1]. Though very simple in its set-up, it can be agptiereal
world data of influenza in certain stages of the underlying Silodel,
when considering the cumulative number of infected casemglthe
outbreak [2], . 8
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for infected I and susceptible§ = N — I with population sizeN,
infection rate3. The master equation reads for the probabjtify , ¢)
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which can besolved using the characteristic function
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3 Solving the master equation

For suitable initial conditions the master equation candbees! to ob-
tain the transition probabilites needed to construct tkeliiood func-
tion. The dynamics of the characteristic function, obtdifiem the
master equation is
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giving the PDE
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using3* := (8/N)I*, and initial conditionp(1, to) = d1,1.
henceg(x, to) = e**10, with solution
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see Fig. 3 a). Then Fourier back transformation gives thesitian

probability p(I, t|Ip, to) explicitly as solution of the master equa- |

tion.
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Abstract

We revisit the parameter estimation framework for popafati
biological dynamical systems, and apply it to calibrateozs
models in epidemiology with empirical time series, namely i
fluenza and dengue fever. When it comes to more complex mod-
els like multi-strain dynamics to describe the virus-hogei-
action in dengue fever, even most recently developed paeame
estimation techniques, like maximum likelihood iteratdtefi

ing, come to their computational limits. However, the first r
sults of parameter estimation with data on dengue fever from
Thailand indicate a subtle interplay between stochagtamitd
deterministic skeleton. The deterministic system on ite alv
ready displays complex dynamics up to deterministic chads a
coexistence of multiple attractors.

4 Likelihood function from
master equation

From the transitions probabilities we can construct thelilitood
function, i.e. the joint probability to find all data pointofn
our empirical time series interpreted as a function of theleho
parameters

P(In,tn, In—1,tn—1,---, lo, to)
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as shown in Fig. 3 b) for the likelihood function and its maxi-
mum as best estimatgt for the parameteB.
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Figure 3:

a) An example of the characteristic function with fixad given

by the sampling rate of the time series. b) From the character
istic function we can obtain the solution of the stochastamled
and with it the likelihood function, as shown here with itsbe
estimate of the model parameter as maximum.

5 Bayesian framework

The Bayesian framework starts by using the likelihood func-
tion L(B) = p(I|B) with I = (Ip, I1,...In) and con-
structs from it the probability of the parameters condiéidron
the present data, here from the time series of the epidersic sy
tem, the Bayesian posteripi(3|I). This can be only achieved
by imposing a priop(3), a probability of plausible parameter
sets, hence we have

p(L|B3)
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For the linear infcetion model all steps can still be perfedm
analytically. The posterior is given explicitly by
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b = b+zf;é (N —1,,41) from the prior parameterg
andb. Fig. 1 shows the comparison of a histogram of best es-
timates from many realizations of the stochastic process)(r
an information which is not given sufficiently in most empai
systems, often we only have a single realization, and thétses
from the parameter estimation, a Gaussian approximatam fr
the best estimate and the Fisher information (green), aadiyfin
the Bayesian posterior (black) obtained from a conjugaitr pr
(blue), which is here nicely broad, not imposing much restri
tion to the considered parameter values.
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6 Numerical likelihood via
stochastic simulations

In cases in which not all steps or even no step can be performed
analytically, a comparison of stochastic simulations,ehefing

on the model parameters, with the empirical data is the only
available information on the parameters. In Fig. 2 an SIRehod
is fitted to empirical data from influenza, here due to thetireda
simplicity of the stochastic model, still a numerical enuat®n

of the whole relevant parameter space is computationally po
sible (equivalent to a flat but cut-off prior. In more complied
models, e.g. dengue fever models and data, even a complete en
meration of the parameter space is not computationallyilpless
though only six parameters and nine initial conditions Hauee
estimated. Particle filtering, i.e. an often quite reseuadistribu-
tion of parameters and initial conditions, a hard prior iry8sian
anguage, is stochastically integrated and compared terttper-

ical time series, selecting the best performers as maxinfiheo
likelihood function.
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Figure 2:

Application of numerical likelihood estimation of infeoti rate and initial
number of susceptibles on influenza data from InfluenzaMentarnet
based surveillance system (EPIWORK project).

7 Application to more

complex models

In such cases, in which the model can display determiniktios,
like the one in dengue we investigate [3, 4], the short terez pr
dictability and long term unpredictability (as measuredthg
largest Lyapunov exponent) even prohibits the comparison o
stochastic simulations with the entire time series. Heteed
tively short parts of the time series are compared with tbefsts-
tic particles, and via simulated annealing the variabitifythe
particles is cooled down, priors narrowed in Bayesian laggu
The final method is called "maximum likelihood iterated filte
ing” (MIF). We apply this method to dengue data from Thailand
and display here bifurcation diagrams obtained from the dsts
mates, see Fig. 4, extrapolating finally to larger popuresizes,
see Fig. 5.
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Figure 4:

Comparison of deteministic skeleton and stochastic sitiauis

for bifurcation diagrams with estimated parameters foreajgiie

in Chiang Mai province and b) dengue in the surrounding nine
northern provinces of Thailand. The crucial parametereésittin-
port o. Even in systems with population sizes well above one

million the noise level of the stochastic system is enormous
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Figure 5:

Extrapolation of population sizes to a) whole Thailand afjd b
Thailand and surrounding countries with ca. 200 mio. inhabi
tants. The noise level of the stochastic simulation apgresithe

deterministic system only for very large system sizes.
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