Modelling and model evaluation on empirical data
in epidemiology:

dynamic noise, chaos and predictability
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Epidemiological systems

with various qualtitative features
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measles in New York City



Epidemiological systems

with various qualtitative features
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Officlally recorded cases and deaths of meningococcal
discase, Norway, 1935-1993
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meningococcal meningitis in Norway



European Union project
DENFREE: ”Dengue reasearch Framework

for Resisting Epidemics in Europe”

\ Dengue Research Framewaork For

F R E E"'- Eii?:i?ig:?lgljmemiEEmEumle

5 years project, start January 2012

together with 2 more EU project
”the largest financial effort on dengue research world wide”



Dengue data from Brazil:

16 years of weekly notified dengue cases

Conf. cases in Belo Horisonte, Brazil ——
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city of Belo Horizonte in the state of Minas Gerais



Dengue data from Thailand

32 years of symptomatic dengue cases for all 77 provinces

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

t

monthly symptomatic dengue cases
in Chiang Mai 1980-2011



Dengue fever outbreak on Madeira, Portugal, 2012

more than 2000 autochtonous cases detected

European Center for Disease Control (ECDC):
”The largest dengue outbreak in Europe since the 1920th”



Basic probability theory

joint probability

p(z,y)
marginal distribution

p(z) = /p(w,y) dy
Bayes’ rule

p(x,y) = p(zly) - p(y)

distribution that an event xg is given with certainty is
p(x) = 6(x — xg) with Dirac’s delta-function

b
/a f(z) - d(x — zo) dx = f(zo)

for g between a and b



Application to epidemic processes

joint probability to find I, infected at time t + At
and I,, at t
p(I’n—I—la In)

marginal distribution to find only one of the variables
no matter what the other variable does

N
p(I’n—I-l) — Z p(In_|_1, In)
1,,=0

Bayes’ rule gives conditional probability p(I,41|In)
for I, 1 knowing for sure I,, times p(Ip)

p(In—I—la In) — p(In—l—llIn) ‘ p(In)

giving a dynamic evolution equation for probabilities
of infected p(I,) at time ¢ into p(I,41) at time t+ At

\Y

pt—|—At(I’n-|—1) — Z p(In—l—llIn) ‘ pt(In)
I,=0



Application to epidemic processes

equation
N
Pt+At(Int1) = Z P(In+1lIn) - pt(In)
I1,=0

is a Perron-Frobenius type equation, and defines a
time discrete Markov process



Application to epidemic processes

differential quotient gives time continous Markov pro-
cess

piiat(l) —pe(I) d

~ — p([I
At ar P
hencg inserting time discrete version with I := I, 14
and I := 1,
At — \At ! At

and inserting normalization of conditioned probability
Z]Iy_op(ﬂI) — 1 into the last term gives

d N .

dt pI) = Z wp j pe(d) — Z wi  pt(d)

with transition rates Wy = (Ait p(Ilf))



Application to epidemic processes

equation

; N ) N
EP(I) = wp i Pe(l) — > wj ; pt(1)
I=0,0#1 I=0,T#41

is also called master equation and defines a time con-
tinuous state discrete Markov process



SIS epidemic

stochastic process
S+1 -2 141
I = 8
for variable I and S = N —1 =>  probab. p(I,t)

%p([,t) = %(I— (N - —-1)) p(I -1,t) + (I +1)p(I+1,t)

~ (RIO¥ = 1) +ar) p(10)
mean (I) := Z]IV:()I - p(I,t)

d P B E .
£ = (8- a)D) — ()
and only in mean field approx. var := (I%) —(I)? = 0

) 16
— (I) = N(D(N — (I)) — alI)
we obtain closed ODE



SIR epidemic

stochastic process
S+1 -2 141
I S R
R = S
for variables S, I and R = N—-S—1 =>  probab.
p(S,1,t)
i (S, I,t) = E(I DS +1)p(S+1,I—-1,¢)
dt p 9 9 N N p 9 9
+y(I +1) p(S, I +1,¢)

+a(N = (S+1) = I) p(S +1,1,¢)

_ (%514-7[4—04(]\7—5—[)) p(S,1,t)



Linear infection model

SIS model ‘
S+1 — I+1

I = 8§
with dynamics for the probab. p([I,t)

%p(I, t) = %(I —1)(N — (I —1))p(I —1,t) + a(I + 1)p(I + 1,t)

— (RIV — 1)+l ) p(L,
simplified to susceptibles infected only outside the con-
sidered population of size [N, by meeting a constant

number of external infected (from much larger sys-
tem) I'*, and no recovery (or cumulative cases in SIR)

S+1 2 1417



Linear infection model

s+ 2 rar
for variable I and S = N —1 =>  probab. p(I,t)

Sp(l,t) = LI (N — (1= 0)p(I = 1,8) = L1t (N = Dp(2, 1)

hence constant force of infection 3* := %I B
linear infection model easily solvable



Characteristic function

like ordinary mean now mean of a function

(einI> ~= Z et . p(I,t) =: g(k,t)



Characteristic function

like ordinary mean now mean of a function
N
(e™ 1y 1= Z e p(I,t) =: g(k,t)
1=0
generates moments

an

OR™

= (I")

r=0

(=2)" g(K,1t)




Characteristic function

like ordinary mean now mean of a function
N
(e™ 1y 1= Z e p(I,t) =: g(k,t)
1=0
generates moments

an

OR™

= (I")

r=0

(=2)" g(K,1t)

and can be inverted (Fourier transform) with
K =: 2% .k
" N+1

N
32T L. .
g(k,t) = Ze e -p(I,t) = g(k,t)
I=0



Characteristic function

like ordinary mean now mean of a function
N
(e™ 1y 1= Z e p(I,t) =: g(k,t)
1=0
generates moments

an
—)" — , 1
(i palent)

(I")

and can be inverted (Fourier transform) with
_. 2w
K =: N1 - k

9(r,t) = Ze WL p(1,) = g(k, 1)

then probability p as function of g

Y

N e tNERT L g(k, t)

k=0

I,t) =
P( ).N+1



Dynamics for g(k,t)

use master equation of SIS stochastic system

O gty = e Lo
ALY — € - ’
at” 2 g



Dynamics for g(k,t)

use master equation of SIS stochastic system
%, N d
. ,t — ikl . I, t
ek Iz:(:)e P )

and after some calculation

0] 0g

Sg(k,1) = BN (€™ = 1) - g(k,t) + 8" (e — 1) - =7



Solution by separation ansatz

solve partial differential equation

o . . 0,
5k ) = BN (€ = 1)) - (k. ) +iB" (™ — 1) - -2

by separation ansatz first with
g(k,t) := h(k) - £(Kk,1)

giving another simpler PDE for £(k,t), and an easily
solvable ODE for h(kx)

oY . oY
DR T Z Y
ot 1O (e )) oK

dh .
— = t¢IN - h(k)
dr

last one with special solution h(k) = etk



Solution by separation ansatz

solve the PDE for £(k,t)

(3 )4 . oY
DA T N Y
ot 1O (e )) oK

by another separation ansatz with
b(k,t) := m(K) - n(t)

giving two separate ODEs for n(t) and m(x) with spe-
cial solutions

— = 13* - n(t) = n(t) = e

dim L m(k) = m(k) =e " (e" — 1)_i




Including initial conditions

for transition probabilities take initially exactly Ig in-
fected at time tg, hence

p(L,ty) = 1.1,
and hence for the characteristic function
N
g(fi',,t()) _ Z PRI p(I, tO) — et*lo
I=0

and include initial conditions into the separation ansatz
via another function ®(z) with z(k,t) = m(k) - n(t)

g(k,t) = h(r) - ®(2) = h(r) - 2(£(k, 1))

and initial condition equation gives functional form of
®(z) by inverting z(k,tg) to k(z,tg)

g(K’a tO) — h(li’,) . (I)(z(,z;l, tO)) — eih‘,IO



Including initial conditions

g(k,tg) = h(k) - P(z(k,ty)) = eirlo

resulting in e = e *" (2, tg) as function of z and tg
as

o=k _ 1 _ 5igBto
and

N A
®(z) = (1 — z%e” to) i



Solution of characteristic function

g(”’? t) — h(HB) . (I)(Z(ﬁ;,t))

g(k,t) = e*N . (e—me—ﬁ*(t_to) +(1— e_ﬁ*(t_to)))N—Io




Solution of characteristic function

the solution for all times, including the initial condi-
tions, is now given by

g(k,t) = h(k) - ®(2(k,1))
resulting in

g(’fz, t) — e’&KZN R (e—iﬁe—ﬁ*(t—to) _I_ (1 N e_ﬁ*(t_to)))N—IO

. 27
and with p(I,t) = iy Shge N7 . g(k(k), t)

(Fourier back-transformation)

_ . N-I ) I—1
p(z,t):(f}’_ I{)ﬂ) (e e=) " (1 = gm0} T

this is also the transition probability p(ZI, t|Ig, tg)
needed for the likelihood function



Stochastic simulation
%k /6 k
S4+I1I" — I +1

%p(I, t) = B*(N — (I —1))p(I —1,t) — B*(IN — I)p(1, t)




Stochastic simulation
%k /6 k
S4+I1I" — I +1

%p(I, t) = B*(N — (I —1))p(I —1,t) — B*(IN — I)p(1, t)




Likelihood function from data (Ig, I1,...Ip)

joint probability of data points

n—1

p(Ina tn’ In—la tn—la 00Og Ila tla IOa tO) — H p(Iu—l—la tV—|-1|IV7 tu)‘p(IOa tO)

vr=0



Likelihood function from data (Ig, I1,...Ip)

joint probability of data points

n—1

p(Ina tn’ In—la tn—1’ 00Og Ila tla IOa tO) — H p(Il/—|—1? tu—|—1|I1/9 tu)‘p(IOa tO)

vr=0

inserting solution of stochastic process

— N—-1 I—-1
p(I, t|IO, tO) — ( ]j IIO ) (e—ﬂ(t—to)) (1 - e—ﬁ(t—to)) 0
— 40



Likelihood function from data (Ig, I1,...Ip)

joint probability of data points

n—1

p(Ina tn’ In—la tn—1’ Doog Ila tla IOa tO) — H p(Il/—|—1? tu—|—1|I1/9 tu)‘p(IOa tO)
vr=0

inserting solution of stochastic process

— N—-1 I—-1
p(I, t|IO, tO) — ( ]j IIO ) (e—ﬂ(t—to)) (1 - e—ﬁ(t—to)) 0
— 40

gives likelihood function

n—1
N — II/ o N—-I,+1 i I, 1—1,
L) =] ( N IV) G (1 eptan)

vr=0



Likelihood function from data (Ig, I1,...Ip)

n—1
N — I J'_IV-I-l II/—I—l_II/
s 1 —ﬁ(At) —ﬁ(At)
L(ﬁ)_H<Lj+l—L,> (e77) (1= ePen)

r=0

04 06 08 1 12 14 .

B




Likelihood function from data (Ig, I1,...Ip)

n—1
N — I J'_IV-I-l II/—I—l_II/
s 1 —ﬁ(At) —ﬁ(At)
L<5)_H<L/+1—L,> (e77) (1= ePen)

r=0

04 06 08 1 12 14 16




Confidence intervals via Fisher information




Experiment: many realizations




Experiment: many realizations




Likelihood function for multiple paramters

joint probability of data points

n—1

p(Ina t'rw In—la tn—la see Ila tla IO? tO) — H p(Il/—I-17 tu—|-1|I1/7 tl/)'p(I07 tO)

vr=0

inserting solution of stochastic process

_ N—I I-1I
p(I,t|1y,ty) = ( ];T IIO ) (e‘ﬁ(t_t0)> (1 - e_ﬁ(t_t(’)) )
— 1o

gives likelihood function

n—1
N - I,/ . N—-I,1 B I, 1—1,
L(3,N) = [] ( S L/) G (1 eptan)

vr=0



Likelihood function

Likelihood per data point



Likelihood function
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Generalization to further models:
Euler-multinomial approximation

approximation for small time steps At =t — {g

S+ I, 25 141,

gives stochastic process for decay of suseptibles S

d
_P(S,1) = %IO(S +1)p(S +1,1) — %IOSMS» 2

giving
e — L Io(t—to)\° _BIo(t—tg)) 07
p(Sat|509t0)—<S> (e N-0 0) (1—6 ~N10 0)

updating at time t1 to S1 = S and I = Iy+ (So — S1)
giving

S So—S
p(S]_7 tO _I_ Atl‘SO) to) — ( SO ) (e—%I()At> ! (1 e e_%IOAt) 0 1



Generalization to further models:
Euler-multinomial approximation

approximation for small time steps At =t — {g

S+ I, 25 141,

gives stochastic process for decay of suseptibles S

d
_P(S,1) = %IO(S +1)p(S +1,1) — %IOSMS» 2

giving
e — L Io(t—to)\° _BIo(t—tg)) 07
p(Sat|509t0)—<S> (e N-0 0) (1—6 ~N10 0)

updating at time t1 to S1 = S and I = Iy+ (So — S1)
giving

- it L1
p(IlatO+At|107 tO) = (]]3 B '5(1)) (e_%foAt) ! (1 . e_%IOAt> 1—10



Generalization to further models:
Euler-multinomial approximation

in the same way ”decay of infected”
I = S
gives stochastic process for decay of infected I
d
Sp(I,t) = a(l + Dp(I + 1,t) — aIp(S, 1)
updating at time tg+ At to I and So = So+ (Ig— I1)
giving

p(I29 tO + At|I09 tO) — (;2) (e—aAt)IZ (1 i e—aAt)I()—Iz



Generalization to further models:
Euler-multinomial approximation

and putting everything together to the final update
for the full SIS model

S+ 1, 25 I+1I,
I — S
gives with update rules I = Iy + I1 — (N — I2) and
its stochastic version p(I¢|I1,I2) = 01, N—1y+I,—1I,

N—-Iy, I

p(It, t| 1o, to) = Z Z p(Ii| 11, I) - p(I2,to + At|Ip, to)
I11=0 I,=0

p(I1,to + At|Iy, ty)

and from this again the likelihood, but sticking with
eventually large summations in it



Likelihood function:
Euler-multinomial approximation

Likelihood per data point



Likelihood function
Euler-multinomial approximation




Comparison of data with simulations

number of simulations in 7-ball vicinity to data set gives likeli-
hood of data under this model parameter set

=>  estimate of likelihood function (Stollenwerk, Briggs 2000)



Comparison of data with

r
likelihood curves for the one parameter r for
The maximum does not
g that the estimate for the

mates of the parameters used for our likelihood
are obtained with this method.
l'n»m the Padé approxi
0! ]ll\tllhnﬂd sections we c

to all other model parameters, which is rather cum-
bersome for the Empirical Likelihood Method due to
the fluctuations around the empirical likelihood max-
imum (see Fig. 4). In biological systems one often
information about some of the model parameters
from other experiments and searches for an othel
wise difficult obtainable parameter like the contact
rate, which is r in our case. In such situations the
Empirical Likelihood Method is easiest and best
Jppluahle However, we have also investigated em-
cal likelihoods with variation of two parameters

[11]

8. Summary and prospect

We have solved the Master equation for a plant
disease model analytically and also obtained numer

ly stable solutions over the whole range of state:
which was previously not possible using the matr
exponential.

Physics Letters A 274 (2000) 84-91

The solution is used for constructing likelihood
sections from empi microcosm data. The Master
equation approach can be easily generalized to more
complex models, allowing for likelihood estimations
on the basis of simulated trajectories. Further re
search this Empirical Likelihood Method is
prog;

The form of the Master equation we use here
gives exponential waiting times between events and
in the Gillespie algorithm this property is used ex-
plicitly to construct stochastic realizations of the
process. However, the exponential waiting time is
not a principal restriction, but arbitrary waiting time
distributions can be included in a Master equation
with time-convolution [13,14]. It would be an intes
esting extension of the present work to combine
numerically this ti y ster equation

experimental system more appropt
periments by Bailey et al. indicate [22 ]) The time
decaying susceptibilit

threshold region between a simple spreading regime
and a non-spre
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lihood sections for all three parameters, i.c.
obtained from the likelihood maximization. The c:

using the B-recursion, i.e. using Eq. (14). We ob-
tained in this way the same value for L from both
methods. Only the machine precision prevented us-
ing the B-recursion for higher values of k.

7. Empirical likelihood

The above mentioned solution cannot be carried
through o more general Master equations, which
have different time-dependent transition rates for
different transitions as likely in multicompartmental
models, for example models with an additional ex-

simulations

/ Physics Letters A 274 (2000) 84-91

0.01 0.02 0.03 004 005 0.06

q

holds for time-dependent multicompartment models
and even can be used for constructing empi

ined likelihoods. We experiment with such
method by estimating the joint probability of
data, that is, Eq. (12), directly from simulated
stochastic trajectories. In the space of dimensionality
of the number of data points the estimate is
using balls around the measured data with
(n-balls) and counting the number of simulated tr

jectories inside these neighborhoods (for details see a

forthcoming article by Stollenwerk [11]). The esti-




n-ball method for Dutch influenza data

daily influenza data between 1st of January and 15th of April
2007 for the Netherlands (from InfluenzaNet, EPIWORK project)

to be compared with SIR stochastic simulations for various
parameter values



Estimated likelihood function
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Estimated likelihood function

Likelihood per data point



Stochastic simulation
%k /6 k
S4+I1I" — I +1

%p(I, t) = B*(N — (I —1))p(I —1,t) — B*(IN — I)p(1, t)




Experiment: many realizations




Experiment: many realizations




Bayesian approach to improve
confidence intervals

as before data vector I = (I, I1,...I,) consider joint
probability of data and parameter

p(ﬁa l) — p(la /6)

gives via conditional probabilities p(3|1)-p(I) = p(L|3)-
p(B) the probability of the parameter given the data
p(B|I), the Bayesian posterior

_ p(1]B)

p(BII) = (1) p(B)

again with previously used likelihood function p(I|3)




Bayesian approach to improve
confidence intervals

p(1]3)

p(BII) = p(B)

p(I)




Bayesian approach to improve
confidence intervals

_ p(I|B)
p(BlI) = (D) p(B)

with previously used likelihood function p(I|8) = L(3)

n—1

N — 1T N—I 71

I = v e_IB'At v+1 1 — e—,@-At v+1 v

p(z19) = [ (Y70 ) e )
or with abreviation 0 := 1 — e #At
n—1

N - I n—1 n—1

I 0 p— v 1 — 0 Zu:O(N_II/-H)HZV:()(IV—I—l_Iv)

p(1]0) <VHO(IVH_IV)> (1-0)

has the functional form
p(I|0) =k, 62 (1 — 9)*



Bayesian approach to improve
confidence intervals

_ p(I|B)
p(BIL) = oD p(B)

with previously used likelihood function p(I|8) = L(3)

n—1

Al IV P v —03- v+1—1y
p(L|B) = H (Iu+1 B I,,) (e BAt)N Lt (1 _ e BAt)I +1—1
vr=0
or with abreviation 0 := 1 — e %At has the functional

form
p(1|0) = k1 6% (1 — 0)*

and with beta-function B(a,b) := fol 2 1(1—2)°1 da

and B(a,b) = FI,((GCZE_%I;) the conjugate prior is

p(6) = 6°' (1 —6)""" /B(a,b)




Bayesian approach to improve
confidence intervals

p(1]0)
p(1) Y

with above given likelihood function p(Z|@) and prior

p(0) we only need still the normalization constant
1

p(I) = / p(1|6)p(6) db

0

p(0|I) =

(9)

and the transformation to the original variable 3

p(B|L) — p(eu)%

to calculate the desired posterior p(3|I), i.e. the prob-
ability for the parameter given the data



Bayesian posterior

T(a+b+>, (N —1L))
I'(a + ZZL;&(IVJA — L)) I'(b+ ZZ;%(N — I,41))

(1 — e—BAt)“+ZZ;3(I”+1_I'/)—1 (e—ﬁAt>b+Zﬁ;3(N—Iy+1)—1

.e_BAt R At

p(B|I) =




Bayesian posterior




Changing Bayesian prior




Changing Bayesian prior




Changing Bayesian prior




Changing Bayesian prior




Another example:
estimating exponential distribution

the effects are even more pronounced



Empirical situation




Empirical situation




Model comparison:
Linear Inf. model versus Poisson model

Linear Infection model

S+ L 141
with dynamics for the probab. p([I,t)

d
RIS NE () p (B G NS p (i)
can be further simplified. For large N

BN -(I—-1) =B (N —-I)= (BN =:A

Master equation reduced to

%p([,t) = A -p(I — 17t) — A -p(I,t)
Solution (with initial conditions p(I,tg) = 41 1,)

(AAL)I 1o
(I — Io)!

—AAt

p(I,t) =



Likelihood function from data (Ig, I1,...Ip)

Joint probability of data points for Markovian pro-
cesses

n—1

p(In7 tn7 In—la tn—la se0 I17 t17 IO? tO) — H p(Iu—i—la tu—|—1|Iu7 tu)'p(I07 tO)

vr=0

Insert transition probabilities

(AAL)I—o A
I.t\lI,. ty) =
p( ) | 1K) O) (I—I())'
Likelihood function
n—1 (AAt)IV_'_l_IV A

L) =]

r=0

(Iv+1 i I,,)!



Poisson model, Bayesian

Likelihood Function

n—1 ()\At)I,,_H—I,,
L(A) N H (IV+1 i I,,)!

v=0

—AAt

with new parameter

0 := \At

equal to

n—1
]- n—1
L(O) — I | HZV:O(II/—I—I_Iu)e—H’n



Poisson model, Bayesian

With constants

n—1
ky:=>» (Ig1—1)
v=0

and

n—1 1

k5 =
,,1;[0 (IV-I—l _ V)!

we rewrite L

L(0) = ks0%2e7 9" =: p(1|0)

conjugate prior
b5>

F(az)

pa2,b2(0) —

00,2—18—1720 — p(e)



Poisson model, Bayesian

In our case

az

p(1]0) - p(0) = ks rl()2 ) goztha—le=(bztn)f — fg gartha—le=(batn)
az

Normalizing constant

b(212 . I‘(a2 —|— kz)
F(az) (bg -+ ’I’L)a2+k2

p(I) = / " p(110)p(6)d6 = ks

p(L|0)p(0)  (by + n)*th g(az+ks—1) ,—(by+n)6

POID =" = T(as+ k)

Finally we get

9 N (b2 —|— n)a2+k2

d
AI) =pO|I)— = AA¢)(aztke=1) g=AAb2N) Ay




Model Comparison

Consider, for a given data set I, two models: My with
parameter 3 and Mo with parameter A

(L] M)
p(Mi|I) _ “pm PML)  p(I|My) p(Mh)

p(M-|I) B %ﬁz) - p(M->) B p(I|M;) p(Ms>)




Model Comparison

Consider, for a given data set I, two models: M; with
parameter 3 and Mo with parameter A

(L] M)
p(Mi|I) _ “pm PML)  p(I|My) p(Mh)

p(M-|I) B % - p(M->) B p(I|M;) p(Ms>)

Assuming p(M71) = p(M2) = % we obtain the Bayes
factor k via

p(Mill) _ pUIMy) _
p(Ms|I) p(I|My)




Model Comparison

Consider, for a given data set I, two models: M; with
parameter 3 and Mo with parameter A

(I|My)
p(Mi|I) it p(My)  p(I|My) p(M)

p(M-|I) B % - p(M->) B p(I|M;) p(Ms>)

Assuming p(M71) = p(Ms2) = % we obtain the Bayes
factor k via

p(Mi|I) p(I|My)
p(M,|I)  p(I|M;)

and with p(l|Ml) = fp(l|69 Ml)p(ﬁv Ml) dﬁ

L(a1 +b1) T(ay+ k2)I'(by + ks)
I‘(al)I‘(az) F(a1 -+ kz -+ bl -+ k3)
and p(I|M3) := [ p(L|A, Mz)p(X, M3) dA

bgz . I‘(a2 -+ kg)
F(az) (b2 —+ n)“2+"72

p(l|M1) = k; -

P(1|M2) = ks -



Model Comparison

we get for Bayes factor k

_k1-T(a1+b1) - T(a1 + ko) - T(by + k3) - T(az) - (b2 + m)2+*

ks T(ay) -T(b1) - T(ay + ko + by + k3) - T'(az + k) - b3?

where

n—1 n—1
N — 1,
ki := (H (Iu+1 s )) ks := E_O(II/—H —1,)




Numerical examples




Numerical examples




Numerical examples




Bayes factor for many realizations

over changing parameter

many realizations show more evidence for simplistic model
than for the underlying model

(lines for In(1), no evidence, and In(10),
”strong evidence” for more complex model)



Prediction into future based on data (Ig, I, ...I)



Prediction into future based on data (Ig, I, ...I)

joint probability of data points gives likelihood e.g. for
the linear infection model L(3)

n—1
p(Inatna In—la tn—19"°9I19t17I07 t0|/6) — Hp(IV+19tV—|—1|IV7tV9/B) 'p(I09tO)
vr=0
= L(P)
and transition probability now into the future t >
tn = tmax knowing I, at t,, was already calculated

previously :-)

_ N-I I—1I,
p(I7t|In7 tn, /3) — (]IY— IIn) (e_ﬂ(t_t")) (1 — e_ﬂ(t_t")>
is a function of the estimated model parameter 3

p(I,t| 1, tn, B) = p(I,t|I,, tn, B)

with maximum likelihood estimate B or any best value

from the Bayesian posterior p(3|I), maximum, median
etc., inserted



Prediction into future based on data (Ig, I, ...I)

A

then best prediction I,; for next time step £,11
given by maximum of p(In41,tn+1|In, tn, B)

0 .
In p(In—i—la tn+1|Ina tn, 6) =0
BIn_H jn+1
using ! = I'(z 4+ 1) or for large values Stirling’s for-

mula z! ~ % *(®) and for quantifying the insecurity
of this prediction use

p(In—l—la tn—l—l |In9 tna B)

but:

Where is the insecurity

of the underlying previous data (Ig, I1,...In,) 777



Prediction into future based on data (Ig, I, ...I)

from the prediction probability p(I,+1,tn+1|In, tn, [:})
and the Bayesian posterior p(3|I)

p(13|l) — p(/BlIla /g ooos In)
we can construct a joint probability as the product

p(I’n-|-19 t’n+1|Ina tna /8) ‘ p(ﬁll) — p(In+1a tn—|—19 Bll)

and integrate over the model parameter 3 to obtain
the prediction based on the underlying data only (and
including the parameter insecurity naturally)

oo

p(In—l—h tn—l—lll) — /p(In+17 tn+1|In7tn7 /6) ’ p(ﬁll) dIB
0

and only in the limiting case of exactly known param-
eter p(B3|I) := 6(B — B) we obtain the previous result

P(Int1,tnt1ll, B)

explicit calculation as homework :-)



Prediction into future based on data (Ig, I, ...I)

prediction probability p(I,+1,tn+1|L) for the linear
infection model (including parameter insecurity)

oo

p(Insr, |I) = / P(Ins1s byt | Ins ts B) - (B|I) dB
0

B ( N -1, )B(a‘|‘In—|—1_In+k23b+N_In—|—1+k3)
- A\ T — I B(a + ks, b + ks)

again in terms of the beta-function, still depending
on prior parameters but not explicitly on model pa-

rameter (3, with ko := ZZ”;(}(IV_H — I,) and k3 :=
ZZ;&(N — I,,+1) only being data dependent

expected to have wide distribution in case of few data



Application to more complex systems:
Comparison of data with simulations

0

0 10 20 30 40 50 60 70 10 20 30 40 50 60 70

t t

number of simulations in 7-ball vicinity to data set gives likeli-
hood of data under this model parameter set
=5= estimate of likelihood function (Stollenwerk, Briggs 2000)



Short term predictability,
long term unpredictability

attractor
perturbed ——

2}
c
o
=
O
Q
Y—
o
b
S
@©
®)
c
o
O
O}
n

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

t

simulations with different initial conditions




Iterated Filtering

algorithmic descritption after Breté et al. 2009:

MODEL INPUT: f(')a g('l')7 Y1y s YNy Loy s tN

ALGORITHMIC PARAMETERS: integers J, L, Mj; scalars 0 < a < 1, b > 0; vectors X\" , 91,
positive definite symmetric matrices Xy ,3g.

10.
11.
12.
13.
14.
15.

16.

17.
18.

RETURN

$2G SU B B s 29 LY L

FORm=1toM
Xi(to,j) ~ NIX{™,a™ 18], j=1,..,J
XFr(to, ) = X1(to,J)
0(tg,7) ~ N[0™, ba™ 1]
O(tg) = 6™
FORn=1to N

Xp(tn:d) = fF(XF(tn—1,7)s tn—1,tn, O(tn—1,3), W)
w(n,J) = g(Yn| XpP(tns J)s tn, 0(tn—1,3))
draw ki, ..., kjy such that Prob(k; = i) = w(n,%)/ Z'w(n,f)
£
XF(tn,J) = Xp(tn, kj)
X1(tn,J) = Xr(tn—1, kj)
O(tn,j) ~ N[O(tn_1, kj)a am_l(tn — tn—1)30)
Set 0;(t,) to be the sample mean of {0;(tn—1,k;), j =1,...,J}
Set V;(t,) to be the sample variance of {0;(tn,j), j=1,...,J}

END FOR

N
0,7 = 0™ + Vilta) 3_ Vi (tn) (Bi(tn) — Bi(tn-1))

n=1

Set X}m_’_l) to be the sample mean of {X(tr,j5), 7=1,...,J}
END FOR

maximum likelihood estimate for parameters, 6 = §(M+1)

maximum likelihood estimate for initial values, X () =

X}M+1)

maximized conditional log likelihood estimates, £,,(0) = log(>_; w(n,j)/J)
maximized log likelihood estimate, £(8) = 3, 2,(0)



A fresh look at Iterated Filtering

to include dynamic noise appropriately

algorithmic descritption after Bret6 et al. 2009

MODEL INPUT: f(-), g(:|*), Y15 --s YN, toy s tN

ALGORITHMIC PARAMETERS: integers J, L, M; scalars 0 < a < 1, b > 0; vectors X}l) , 0L

positive definite symmetric matrices 3y ,3g.

10.
11.
12.
13.
14.
15.

16.

17.
18.

RETURN

Pk SU B B s B9

FORm =1to M
X1(to,§) ~ N[X{™, a™ 15y, j=1,..,J
Xr(to,j) = X1(to,J)
0(to,j) ~ N[0™, ba™ 15g]
0(to) = 6™
FORn=1toN
Xp(tn,J) = F(XF(tn—1,7)stn—1,tn, 0(tn-1,3), W)
w(n,j) = g(Yn|Xp(tn;3), tn, 0(tn—1,7))
draw ki, ..., ks such that Prob(k; = i) = w(n,)/ Zw(n,f)
£
XF(tmj) - XP(tm kj)
XI(t'na .7) = XI(tn—la kj)
O(tn,j) ~ N[O(tn—1,k;),a™ *(tn — tn—1)Ze]
Set 0;(t,) to be the sample mean of {0;(tn—1,k;), j=1,...,J}
Set V;(t,) to be the sample variance of {0;(t,,j), 7 =1,...,J}
END FOR

N
0, = 0™ + Vi(t1) 3 Vi (tn) (Bi(tn) — Bitn1))

=il
Set X}m-'-l) to be the sample mean of {X;(tr,j), j=1,...,J}
END FOR

maximum likelihood estimate for parameters, 6 = g(M+1)

maximum likelihood estimate for initial values, X (o) =

X (MAD

maximized conditional log likelihood estimates, £, (0) = log(>_; w(n,j)/J)
maximized log likelihood estimate, £(8) = Yom 2,(0)



A fresh look at Iterated Filtering

to include dynamic noise appropriately

algorithmic descritption after Bret6 et al. 2009

MODEL INPUT: f(-), g(:|*), Y15 --s YN, toy s tN

ALGORITHMIC PARAMETERS: integers J, L, M; scalars 0 < a < 1, b > 0; vectors X}l) , 0L

positive definite symmetric matrices 3y ,3g.

10.
11.
12.
13.
14.
15.

16.

17.
18.

RETURN

Pk SU B B s B9

FORm =1to M
X1(to,§) ~ N[X{™, a™ 15y, j=1,..,J
Xr(to,j) = X1(to,J)
0(to,j) ~ N[0™, ba™ 15g]
0(to) = 6™
FORn=1toN
XP(tnv.j) - f(XF(tn—la .7)7 tn—1,tn, G(tn—la .7)7 W)
w(n,j) = 9(Yn|Xp(tn, J)s tn, 0(tn-1,73))
draw ki, ..., ks such that Prob(k; = i) = w(n,)/ Zw(n,f)
£
XF(tmj) - XP(tm kj)
XI(t'na .7) = XI(tn—la kj)
O(tn,j) ~ N[O(tn—1,k;),a™ *(tn — tn—1)Ze]
Set 0;(t,) to be the sample mean of {0;(tn—1,k;), j=1,...,J}
Set V;(t,) to be the sample variance of {0;(t,,5), 7 =1,...,J}
END FOR

N
0, = 0™ + Vi(t1) 3 Vi (n) (Bi(tn) — Bitn1))

=il
Set X}m-'-l) to be the sample mean of {X;(tr,j), j=1,...,J}
END FOR

maximum likelihood estimate for parameters, 6 = g(M+1)

maximum likelihood estimate for initial values, X (o) =

X (MHD

maximized conditional log likelihood estimates, £, (0) = log(>_; w(n,j)/J)
maximized log likelihood estimate, £(8) = Yom 2,(0)



A fresh look at Iterated Filtering

to include dynamic noise appropriately

algorithmic descritption after Breto et al. 2009:

MODEL INPUT: f()’ g('l')? Y1y -y YN5 L0y -y tN

ALGORITHMIC PARAMETERS: integers J, L, M; scalars 0 < a < 1, b > 0; vectors X}l) , 0L
positive definite symmetric matrices 3y ,3g.

FORm=1to M

X1(to,j) ~ N[X\™, a™1%], j=1,..,J

XF(to,3) = Xr(to,3)

0(to,7) ~ N[0™, ba™ 154

O(to) = 6™

FORn=1to N
Xp(tn,j) = F(XF(tn—1,73)stn—1,tn, 0(tn-1,3), W)
w(n,J) = g(Yn|Xp(tn,3), tn, O(tn—1,7))

draw ki, ..., ks such that Prob(k; = i) = w(n,%)/ Zw(n,!)
£

SRR NCC R e

use e.g. n-balls to construct likelihood



Example study for particle filter:
SIRS with seasonality and import

stochastic process
s+1 2% 141
I . R
R = S
S = I
with seasonal forcing given by

B(t) = Bo- (14 0 - cos(wt))
and parameters in the UPCA region, relevant for in-
fluenza, o = %, 0 — % — %y_l, Bo = 1.5, and

6 =0.12
In(p) = —15



Example study for particle filter:
SIRS with seasonality and import




Time series generated via (Gillespie algorithm




Time series generated via (Gillespie algorithm
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Comparison with Euler-multinomial approximation
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Euler-multinomial approximation:
changing At
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Constructing particle filter:
particle weights from dynamic noise

250000
200000
150000

100000

50000

cloud of simulations around the first 6 months of data
Euler-multinomial with At = 0.01d



Constructing particle filter:
particle weights from dynamic noise

compare the dataset I'p = (I1, I2,..., ), with dimen-
sion FE (here E = 6 months) with K Euler-multinomial
simulations I k(Qj) performed with parameter set 6

(”particles”)
1 K
P(Lel6;) = ¢ > H (1= 1ILs = L(6))lle)
k=1

simulations in n-ball around the data, with H (x) being
the Heaviside step function, give estimate of the time-
local likelihood function p(Ig|6;), hence for K — oo

and n — 0

wj := p(Ip|0;) — p(Ipl0;)

giving the weights of particles w; for the particle filter



Constructing particle filter:
distribution of distances

P(Ls10;) = 3o D H (0= I1Ls — Lu(6)lle




Constructing particle filter:
variation of parameters

1 _(0—p)?
)

350000
300000
250000
200000

150000

100000

50000

o]




Constructing particle filter:
variation of several param. and initial cond.

D
|

(09 0, IOv RO)

350000
300000
250000
200000

150000

100000

50000

0




Constructing particle filter:
calculation of weights of each particle

800000
700000
600000
500000
- 400000
300000
200000
100000

0
0.005 0.01 0.015

dist




Constructing particle filter:
calculation of weights of each particle

0.6
0.4
0.2

0
. 0.1 011 012 013 0.14 0.15 0.16 -19 -18 -17 -16 -15 -14 -13 -12 -11

6 P




Constructing particle filter:
filtering after each 6 months slice

1
0.8
0.6
0.4
0.2

0
0.06 0.08 0.1 0.12 0.14 0.16 0.06 0.08 0.1 0.12 0.14 0.16

6 €]



Particle filter in action

now going M = 5 times through the time series with
each £ = 40 time slices of 6 months,

starting parameter values now not any more 6 = 0.12,

but 86 = 0.14, and not In(g) = —15.0 but In(p) =
—13.0

simulated annealing parameters a = 0.8 and at each
m-~tour initial variance factor b = 2 (for details see

e.g. Bretd et al. 2009), update rule with sample mean
over particles égm) (€) at each time slice

L

;" =360
=1



Particle filter in action

700000
600000
500000
400000
300000
200000

100000

0
-21 -20 -19 -18 -17 -16

In(p)




Particle filter in action:
convergence in parameter space

estimates of the parameters along the M = 5 runs
through the time series with 5 X 40 time slices covered



Particle filter in action:
convergence in parameter space

0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

)

estimates of two parameters jointly



Particle filter in action:
convergence in parameter space

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

| | 0

effect of simulated annealing now visible



Particle filter in action:
convergence in parameter space

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0.115 0.2 0.125 0.13 0.135 0.14 0.145

| | 6

completing the iterated filtering for dynamic noise
in chaotic population systems



Particle filter in action:
good description of the data

600000
500000
400000
300000

200000

100000

o]

cloud of simulations stay close to the data
for the selected parameter sets (particles)



Dengue data from Thailand

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

t

monthly symptomatic dengue cases
in Chiang Mai 1980-2011



Dengue data from Thailand

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

t

monthly symptomatic dengue cases
in Trat 1980 to end of 2012



