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Figure 1. a) Zones where Dengue has been reported or where are infection risk [4]. b) Average annual number of DF/DHF cases reported to WHO & average

annual number of countries reporting dengue.

Abstract

A SISUV epidemic model describes the evolution of a vector-borne desease considering interactions between
the vector and the host population. In the case of Dengue Fever the main vector that transmits the virus is
the mosquito of the Aedes’ genus and the main hosts are humans. We wrote the model’s master equation
and derived from that the Fokker-Planck and the Langevin-type equations. The first is a deterministic
partial differential equation that describes the time evolution of the probability distribution, the second is a
stochastic differential equation containing a deterministic part and an additional random white noise term.
Stochatistic computer simulations shows as in the deterministic case, that the dynamics of the vectors is
completely slaved by the one of the humans because of their substantially different life spans.

1 Introduction

Dengue Fever (DF) is an infectious tropical desease. Incidence have increased dramatically from the 1960s
due to a combination of population growth, increased international travel and global warming [4]. There exist
four different serotypes of Dengue (DEN-1, DEN-2, DEN-3 and DEN-4). A first infection is characterized
by flu-like symptoms and brings full life immunity relative to the contracted serotype and temporary cross
immunity to the others, although a second infection can lead to a sever kind of infection called Dengue
Hemorrhagic Fever (DHF), see Aguiar et al. (2008, 2011)5,6. Dengue Fever is endemic in more than 110
countries, and it is because of its wide and rapid diffusion more than its mortality rate that is object of research
initiative. As still there does not exist any commercially available vaccine, vector control remains the main
prevention measure. We propose a stochastic approach to a simple model including vector’s dynamics.

1.1 The SIRUV model

The SIRUV is a basic model describing a vector-borne desease including the vector’s dynamics. The scheme
below shows the considered interactions where, S and U are respectively the susceptible humans and the
susceptible mosquitos, I and V are respectively the infected humans and the infected mosquitos, and R is
the class of the recovered people that are now immune to the contracted serotype. As mosquitos do not have
an immune system there is no possibility of recovery.

S + V
β−→ I + V

I
γ−→ R

R
µ−→ S

I
µ−→ S

S
µ−→ S

U + I
ϑ−→ V + I

V
ν−→ U

U
φ−→ U

Table 1. Realistic parameter’s set for the SIRUV model (F. Rocha et al., 2012).
Parameter Description Simulation Values

µ Human’s birth and death rate 1/65y−1

β Human’s infection rate 2γ

γ Human’s recovery rate 1/7d−1

ν Mosquito’s death rate 1/10d−1

ϑ Mosquito’s infection rate 2ν

φ Mosquito’s birth rate νM

N Human’s population size 1000

M Mosquito’s population size 10N

1.2 The simplified SISUV epidemic model

The SISUV is a simplified version of the SIRUV model where the class of the recovered people does not
appear and an infected human just returns to be a susceptible with a new recovery rate α. This simplification
causes a loss of reality in the modelling, but simplifies the calculations. To simulate as much as possible the
original SIRUV system, the new recovery rate was set to α = 1/10y−1, see F. Rocha et al. (2012), and the
other parameters are kept as in Table 1. Supposing that N = I(t) +S(t) and M = V (t) +U(t) are constant
for every time, the deterministic SISUV model is

dI

dt
=
β

M
(N − I)V − αI

dV

dt
=
ϑ

N
(M − V )I − νV

2 The master equation

The master equation is a gain-loss equation for the probability of each state, the positive terms are the gain
due to a transitions from other states and the negative terms are the loss due to transitions into other states.
The following is the master equation for the SISUV model just presented

dp(I, V, t)

dt
=
β

M
(N − (I − 1))V p(I − 1, V, t) + α(I + 1)p(I + 1, V, t)

+
ϑ

N
(M − (V − 1)) Ip(I, V − 1, t) + ν(V + 1)p(I, V + 1, t)

−
(
β

M
(N − I)V + αI +

ϑ

N
(M − V )I + νV

)
p(I, V, t)

Considering densities of populations x := I
N , v := V

M and changing variables we obtain
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− (βN(1− x)v + αxN + ϑM(1− v)x + νvM) p(x, v, t)

2.1 The Fokker-Planck equation and the Stochastic ODE

We derive the Fokker-Planck equation from the latest expression of the master equation by Taylor’s expansion
up to second order around the state (x, v) with small deviation ∆x = 1/N and ∆v = 1/M , also called
Kramers-Moyal’s expansion.

∂tp(x, v, t) = −∂x [(β(1− x)v − αx) p(x, v, t)]− ∂v [(ϑ(1− v)x− νv) p(x, v, t)]

+
1

2N
∂xx [(β(1− x)v + αx) p(x, v, t)] +

1

2M
∂vv [(ϑ(1− v)x + νv) p(x, v, t)]

The Fokker-Planck equation is a generalized diffusion equation where the drift terms gives the deterministic
ODE system and a combination of this with the diffusion terms leads to the stochastic ODE system

dx

dt
= β(1− x)v − αx +

1

N

√
β(1− x)v + αx εx

dv

dt
= ϑ(1− v)x− νv +

1

M

√
ϑ(1− v)x + νv εv

that is a Langevin type equation
dz

dt
= f (z) + G(z)Σε(t)

where f is a vector composed by the drift terms of the Fokker-Planck equation, G is a matrix depending
on the states of the system z and Σ is a variance matrix for the Gaussian noise ε with zero mean and unit
variance.

3 Stochastic simulation

The graphics below show that even for the stochastic simulation mosquito’s dynamics is completely slaved by the human ones because
of their different life spans, and from the state space plot is possible to visualize the stable manifold where the solutions of the model
lies. The Gillispie algorithm was used to solve the master equation, while the following discretisation scheme (Itô formulation)

xt+∆t = xt + f (xt)∆t + g(xt)
√

∆t σt εt

was used for the stochastic ODE, where εt is a Gaussian white noise generated with the Box-Muller algorithm.
In Table 1. there are the parameters used for the simulations. In every image there are represented the solutions in terms of densities of
the master equation, of the stochastic ODE and of the deterministic ODE respectively with red, blue and black curves.
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Figure 2. Respectively from left to right the state space plot and the time series for the humans and for the mosquitos all in terms of densities, with initial condition x0 = 0, 1 for the humans and

v0 = 0, 3 for the mosquitos and parameters set as given in Table 1.

4 Conclusion

We proposed a first stochastic epidemic model for vector-borne desease taking into account
mosquito’s dynamics. We wrote the master equation and by Kramers-Moyal’s expansion
we derived the Fokker-Planck equation and the stochastic ODE. Computer simulations
show that both approaches goes well presenting the expected behaviour. In fact as in
the deterministic case vector’s dynamics is slaved by the humans one, see F. Rocha et
al. (2012). Future research is to extend this kind of approach for example to the SIRUV
epidemic model and more complex vector-borne desease model.
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