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Cyclic Coevolutionary Model
S⇒ I⇒ S + topological coevolution

x : fraction of I-nodes; m = {1− x} − x network magnetization

Transmission:
p

==⇒

Relaxation:
r(1+m)
=====⇒

Rewiring: w
==⇒
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Our Model Adaptive SIS Coevolutionary Voter Model

SI
p−→II SI

p−→II SI
p/2−−→II

I
r(1+m)−−−−→ S I r−→ S SI

p/2−−→ SS

SI+ S w−→ SS+I SI+ S w−→ SS+I SI+ S
w/2−−→ SS+I and SI+I

w/2−−→II+ S
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reparametrization: w = ω, p = (1− ω)ρ, r = (1− ω)(1− ρ)
dx
dt

=(1− ω) (ρz − 2 (1− ρ) (1− x)x)

dy
dt

=(1− ω)
(
ρz
(
κ

z
1− x

+ 1
)
− 4 (1− ρ) (1− x)y

)
dz
dt

=− z (ω + (1− ω) (ρ+ 2 (1− ρ) (1− x)))− (1− ω) ρκ z2

1− x

+ 4 (1− ω) (1− ρ) (1− x)y + 2 (1− ω) ρκ(〈k〉 − y − z) z
1− x

Moment Closure
κ encapsulates variance of underlying network’s DD

κ = 1 for ER graphs, κ = 〈k〉−1
〈k〉 for RR graph

〈k〉 is mean degree and constant
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a) Phase diagram b) Change of asymptotic behavior in the PA with initial conditions (0.1, 0.025, 0.45), (0.5, 0.625, 1.25) and

(0.9, 1.025, 0.45) (numerical integration of PA, blue triangles) and initially connected ER graphs with fractions 0.1, 0.5 and 0.9

of randomly assigned I-states (MC simulations, red squares). Mean degree 〈k〉 = 5, MC simulations with N = 5000 nodes and

results averaged over 100 realizations.
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Color-coded convergence times τ in MC simulations within DE phase boundaries obtained from PA (solid green lines); maximum

τ are expected at xA = 0.5 (dashed green line). MC simulations with N = 5000, averaged over 100 runs. Mean degree 〈k〉 = 5
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Time evolution of state variables x , y and z along MA (black line) for ω = 0.05 and ρ = 0.32. MC trajectories from initial

conditions (0.01, 0.00025, 0.0495) (initial ER graph, red line) and (0.8, 0.2, 0.2) (maximally random graph with respect to initial

conditions, green line) end up in I-consensus, numerical integration from (0.8, 0.2, 0.2) (blue line) in DE (xA, yA, zA). Network

size N = 104 in MC run.
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Approximate slow manifold

MA

 x
yA{x}
zA{x}

 =

 x
x 2x(x−〈k〉)−2+ω(1+(3+2〈k〉−4x)x)

2(ω+ωx−2)

2(1− x)x 〈k〉(ω−1)+ω+x−2ωx
ω+ωx−2

 ,

exact at triple point T.

With MA and PA dynamics at hand, can we characterize metastability
in the full system?
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For ω = 0 and ZA{X} = NzA{X/N}, Master equation for RW in
X = xN along MA

∂[X ]

∂t
=ρZA{X − 1}[X − 1] + 2(1− ρ)(N − (X + 1))

X + 1
N

[X + 1]

− ρZA{X} − 2(1− ρ)(N − X )
X
N
[X ]

yields splitting probability

πI{X0,N} =

1 +

∑N−1
µ=X0

∏µ
X=1

2(1−ρ)(1−X/N)X
ρZA{X}

1 +
∑X0−1

µ=1
∏µ

X=1
2(1−ρ)(1−X/N)X

ρZA{X}

−1

πI{X0,N} = X0/N on neutrally stable manifold.
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a) System-size dependent splitting probabilities for ω = 0 computed analytically (triangles) and taken from MC simulations

(squares). πI computed for ρ = 0.305 (starting from x0 = 0.9, blue symbols), πS computed for ρ = 0.315 (starting from

x0 = 0.1, red symbols). b) Convergence times in MC simulations as a function of system size for ω = 0 and ρ = 0.3. Inset

ω = 0.05.
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collapsing system to 1-dim RW along slow manifold gives good
qualitative understanding of metastable regime:

scaling of πI with N
predetermination of consensus states for N →∞
parameter region of maximum convergence times

However it delivers dissatisfying quantitative description of full system:
plugging in exact SM sampled from MC simulations brings no
improvement
reason: transversal fluctuations in conjunction with presence of
stable DE
dilemma: stochastic framework applicable only when N →∞
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Symmetric Coevolutionary VM Asymmetric Coevolutionary VM
one ODE 3-dim system of ODEs
magnetization conserved magnetization not conserved
fragmented phase no fragmentation
neutrally stable SM in active phase SM generally not neutrally stable
πI{X0,N} = X0/N πI{X0,N} → 0,1
stochastic consensus stochastic, dynamical consensus
stochastic bistability dynamical bistability
robust with respect to κ choice of κ crucial
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a) Phase diagram b) Change of asymptotic behavior in the PA with initial conditions (0.1, 0.025, 0.45), (0.5, 0.625, 1.25) and

(0.9, 1.025, 0.45) (numerical integration of PA, blue triangles) and initially connected ER graphs with fractions 0.1, 0.5 and 0.9

of randomly assigned I-states (MC simulations, red squares). Mean degree 〈k〉 = 5, MC simulations with N = 5000 nodes and

results averaged over 100 realizations.
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At triple point ωT = 2/(1 + 〈k〉), ρT = 2/(3 + 〈k〉)

symmetric VM emulated for nontrivial parameter combination
SM neutrally stable
〈kS〉 = 〈kI〉
flipping all node spins in DE yields another DE

Moreover: equipartition of transmission, relaxation and rewiring events.
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a) Balance of events ∆E = ρz − 2(1− ρ)(1− x)x and (inset) of mean degrees ∆K = 〈kS〉 − 〈kI〉 for bursts of simulations

from x0 = 0.2, 0.5, 0.8, recorded N = 105 and 10 ≤ t ≤ 100. b) Splitting probabilities for N = 100 (squares) and N = 1000

(triangles). Simulations averaged over 10000 runs from initially connected ER graphs and with mean degree 〈k〉 = 5.
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Given certain ergodic properties of a network process in dynamic
equilibrium, steady state averages imply the steady state of
distributions they arise from. These steady-state distributions are
solely determined by model parameters (S. Wieland, T. Aquino and A.
Nunes, EPL 97, 18003, 2012).

Already for adaptive SIS model in active phase, steady-state
topologies of S- and I-ensemble are identical for nontrivial choice of
parameters (S. Wieland, A. Parisi and A. Nunes, EPJ-ST 212 (1),
99-113, 2012).
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Can different microscopic mechanisms give rise to identical
(equilibrium) ensemble behavior?

If so, are there ”canonical” microscopic dynamics that encompass a
wide class of models for (nontrivial) parameter combinations?
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Asymmetric coevolutionary opinion dynamics
are highly sensitive to initial network topology.
for κ = 1, yield dynamical consensus and bistability thereof, lack
fragmentation.
display metastability with unique features whose quantitative
description demands for improved stochastic framework.
reduce to steady-state adaptive SIS for m = 0 (x = 0.5)
emulate steady-state symmetric VM at triple point of PA, partially
also in the full system.
question whether equilibrium ensemble statistics determine
microscopic dynamics they emerge from.
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